删除 train.py

This commit is contained in:
林嘉烨 2026-01-16 19:34:23 +08:00
parent 0b1efac471
commit ece22dc564

View File

@ -1,90 +0,0 @@
import polars as pl
import pandas as pd
import lightgbm as lgb
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, roc_auc_score, f1_score
from sklearn.preprocessing import LabelEncoder, StandardScaler
import joblib
import logging
import os
from src.data import load_and_clean_data
# 配置日志
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
def train_models(data_path="data/bank.csv", model_dir="models"):
# 1. 加载数据
df_pl = load_and_clean_data(data_path)
df = df_pl.to_pandas() # 转换为 Pandas 以兼容 Sklearn
# 2. 特征预处理
# 区分分类和数值特征
target_col = "target"
X = df.drop(columns=[target_col])
y = df[target_col]
cat_cols = X.select_dtypes(include=['object', 'category']).columns.tolist()
num_cols = X.select_dtypes(include=['int64', 'float64']).columns.tolist()
# Label Encoding (为了简化LightGBM 可以直接处理 Category但 Sklearn 需要编码)
encoders = {}
for col in cat_cols:
le = LabelEncoder()
X[col] = le.fit_transform(X[col].astype(str))
encoders[col] = le
# 3. 数据切分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 4. 训练基线模型 (Logistic Regression)
logger.info("训练基线模型 (Logistic Regression)...")
# 逻辑回归需要归一化
scaler = StandardScaler()
X_train_scaled = X_train.copy()
X_test_scaled = X_test.copy()
X_train_scaled[num_cols] = scaler.fit_transform(X_train[num_cols])
X_test_scaled[num_cols] = scaler.transform(X_test[num_cols])
lr_model = LogisticRegression(max_iter=1000, random_state=42)
lr_model.fit(X_train_scaled, y_train)
lr_pred = lr_model.predict(X_test_scaled)
lr_prob = lr_model.predict_proba(X_test_scaled)[:, 1]
logger.info(f"Baseline F1: {f1_score(y_test, lr_pred):.4f}")
logger.info(f"Baseline AUC: {roc_auc_score(y_test, lr_prob):.4f}")
# 5. 训练进阶模型 (LightGBM)
logger.info("训练进阶模型 (LightGBM)...")
lgb_model = lgb.LGBMClassifier(n_estimators=100, learning_rate=0.05, random_state=42, verbose=-1)
lgb_model.fit(X_train, y_train)
lgb_pred = lgb_model.predict(X_test)
lgb_prob = lgb_model.predict_proba(X_test)[:, 1]
logger.info(f"LightGBM F1: {f1_score(y_test, lgb_pred):.4f}")
logger.info(f"LightGBM AUC: {roc_auc_score(y_test, lgb_prob):.4f}")
# 6. 保存模型与元数据
if not os.path.exists(model_dir):
os.makedirs(model_dir)
artifacts = {
"lgb_model": lgb_model,
"lr_model": lr_model,
"scaler": scaler,
"encoders": encoders,
"features": list(X.columns),
"cat_cols": cat_cols,
"num_cols": num_cols
}
joblib.dump(artifacts, os.path.join(model_dir, "model_artifacts.pkl"))
logger.info(f"模型已保存至 {model_dir}/model_artifacts.pkl")
return artifacts
if __name__ == "__main__":
train_models()