91 lines
2.6 KiB
Python
91 lines
2.6 KiB
Python
import pandas as pd
|
||
import numpy as np
|
||
import xgboost as xgb
|
||
from sklearn.model_selection import train_test_split
|
||
from sklearn.preprocessing import LabelEncoder, StandardScaler
|
||
from sklearn.metrics import accuracy_score, classification_report
|
||
import joblib
|
||
import json
|
||
|
||
# 1. 加载数据
|
||
print("正在加载数据...")
|
||
df = pd.read_csv('bank.csv')
|
||
|
||
# 2. 数据预处理
|
||
print("正在进行数据预处理...")
|
||
|
||
# 移除 duration 列 (避免数据泄露)
|
||
if 'duration' in df.columns:
|
||
df = df.drop('duration', axis=1)
|
||
|
||
# 分离特征和目标
|
||
X = df.drop('deposit', axis=1)
|
||
y = df['deposit']
|
||
|
||
# 处理目标变量 (yes -> 1, no -> 0)
|
||
le_target = LabelEncoder()
|
||
y = le_target.fit_transform(y)
|
||
|
||
# 识别分类特征和数值特征
|
||
categorical_cols = X.select_dtypes(include=['object']).columns.tolist()
|
||
numeric_cols = X.select_dtypes(include=['int64', 'float64']).columns.tolist()
|
||
|
||
# 保存列名信息,供 Agent 使用
|
||
feature_meta = {
|
||
'numeric_cols': numeric_cols,
|
||
'categorical_cols': categorical_cols,
|
||
'all_cols': list(X.columns)
|
||
}
|
||
|
||
# 对分类特征进行 Label Encoding
|
||
# 注意:XGBoost 可以处理类别特征,但通常需要转换为数值。
|
||
# 为了简化 Agent 的推理流程,我们需要保存这些 Encoder。
|
||
encoders = {}
|
||
for col in categorical_cols:
|
||
le = LabelEncoder()
|
||
X[col] = le.fit_transform(X[col])
|
||
encoders[col] = le
|
||
|
||
# 3. 划分数据集
|
||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
||
|
||
# 4. 训练模型
|
||
print("正在训练 XGBoost 模型...")
|
||
model = xgb.XGBClassifier(
|
||
n_estimators=100,
|
||
learning_rate=0.1,
|
||
max_depth=5,
|
||
use_label_encoder=False,
|
||
eval_metric='logloss'
|
||
)
|
||
model.fit(X_train, y_train)
|
||
|
||
# 5. 评估模型
|
||
y_pred = model.predict(X_test)
|
||
y_pred_proba = model.predict_proba(X_test)[:, 1]
|
||
|
||
print("\n模型评估结果:")
|
||
print(f"Accuracy: {accuracy_score(y_test, y_pred):.4f}")
|
||
print("\nClassification Report:")
|
||
print(classification_report(y_test, y_pred))
|
||
|
||
# 6. 保存资产
|
||
print("\n正在保存模型和预处理工具...")
|
||
artifacts = {
|
||
'model': model,
|
||
'encoders': encoders,
|
||
'target_encoder': le_target,
|
||
'feature_meta': feature_meta
|
||
}
|
||
joblib.dump(artifacts, 'model_artifacts.pkl')
|
||
|
||
# 另外保存一份特征重要性,供参考
|
||
importances = model.feature_importances_
|
||
feature_names = X.columns
|
||
feat_imp_df = pd.DataFrame({'Feature': feature_names, 'Importance': importances})
|
||
feat_imp_df = feat_imp_df.sort_values(by='Importance', ascending=False)
|
||
print("\n特征重要性 Top 5:")
|
||
print(feat_imp_df.head())
|
||
|
||
print("\n完成!模型已保存为 'model_artifacts.pkl'")
|