group-wbl/.venv/lib/python3.13/site-packages/langchain_classic/agents/conversational/base.py

179 lines
6.0 KiB
Python
Raw Permalink Normal View History

2026-01-09 09:48:03 +08:00
"""An agent designed to hold a conversation in addition to using tools."""
from __future__ import annotations
from collections.abc import Sequence
from typing import Any
from langchain_core._api import deprecated
from langchain_core.callbacks import BaseCallbackManager
from langchain_core.language_models import BaseLanguageModel
from langchain_core.prompts import PromptTemplate
from langchain_core.tools import BaseTool
from pydantic import Field
from typing_extensions import override
from langchain_classic._api.deprecation import AGENT_DEPRECATION_WARNING
from langchain_classic.agents.agent import Agent, AgentOutputParser
from langchain_classic.agents.agent_types import AgentType
from langchain_classic.agents.conversational.output_parser import ConvoOutputParser
from langchain_classic.agents.conversational.prompt import (
FORMAT_INSTRUCTIONS,
PREFIX,
SUFFIX,
)
from langchain_classic.agents.utils import validate_tools_single_input
from langchain_classic.chains import LLMChain
@deprecated(
"0.1.0",
message=AGENT_DEPRECATION_WARNING,
removal="1.0",
)
class ConversationalAgent(Agent):
"""An agent that holds a conversation in addition to using tools."""
ai_prefix: str = "AI"
"""Prefix to use before AI output."""
output_parser: AgentOutputParser = Field(default_factory=ConvoOutputParser)
"""Output parser for the agent."""
@classmethod
@override
def _get_default_output_parser(
cls,
ai_prefix: str = "AI",
**kwargs: Any,
) -> AgentOutputParser:
return ConvoOutputParser(ai_prefix=ai_prefix)
@property
def _agent_type(self) -> str:
"""Return Identifier of agent type."""
return AgentType.CONVERSATIONAL_REACT_DESCRIPTION
@property
def observation_prefix(self) -> str:
"""Prefix to append the observation with.
Returns:
"Observation: "
"""
return "Observation: "
@property
def llm_prefix(self) -> str:
"""Prefix to append the llm call with.
Returns:
"Thought: "
"""
return "Thought:"
@classmethod
def create_prompt(
cls,
tools: Sequence[BaseTool],
prefix: str = PREFIX,
suffix: str = SUFFIX,
format_instructions: str = FORMAT_INSTRUCTIONS,
ai_prefix: str = "AI",
human_prefix: str = "Human",
input_variables: list[str] | None = None,
) -> PromptTemplate:
"""Create prompt in the style of the zero-shot agent.
Args:
tools: List of tools the agent will have access to, used to format the
prompt.
prefix: String to put before the list of tools.
suffix: String to put after the list of tools.
format_instructions: Instructions on how to use the tools.
ai_prefix: String to use before AI output.
human_prefix: String to use before human output.
input_variables: List of input variables the final prompt will expect.
Defaults to `["input", "chat_history", "agent_scratchpad"]`.
Returns:
A PromptTemplate with the template assembled from the pieces here.
"""
tool_strings = "\n".join(
[f"> {tool.name}: {tool.description}" for tool in tools],
)
tool_names = ", ".join([tool.name for tool in tools])
format_instructions = format_instructions.format(
tool_names=tool_names,
ai_prefix=ai_prefix,
human_prefix=human_prefix,
)
template = f"{prefix}\n\n{tool_strings}\n\n{format_instructions}\n\n{suffix}"
if input_variables is None:
input_variables = ["input", "chat_history", "agent_scratchpad"]
return PromptTemplate(template=template, input_variables=input_variables)
@classmethod
def _validate_tools(cls, tools: Sequence[BaseTool]) -> None:
super()._validate_tools(tools)
validate_tools_single_input(cls.__name__, tools)
@classmethod
def from_llm_and_tools(
cls,
llm: BaseLanguageModel,
tools: Sequence[BaseTool],
callback_manager: BaseCallbackManager | None = None,
output_parser: AgentOutputParser | None = None,
prefix: str = PREFIX,
suffix: str = SUFFIX,
format_instructions: str = FORMAT_INSTRUCTIONS,
ai_prefix: str = "AI",
human_prefix: str = "Human",
input_variables: list[str] | None = None,
**kwargs: Any,
) -> Agent:
"""Construct an agent from an LLM and tools.
Args:
llm: The language model to use.
tools: A list of tools to use.
callback_manager: The callback manager to use.
output_parser: The output parser to use.
prefix: The prefix to use in the prompt.
suffix: The suffix to use in the prompt.
format_instructions: The format instructions to use.
ai_prefix: The prefix to use before AI output.
human_prefix: The prefix to use before human output.
input_variables: The input variables to use.
**kwargs: Any additional keyword arguments to pass to the agent.
Returns:
An agent.
"""
cls._validate_tools(tools)
prompt = cls.create_prompt(
tools,
ai_prefix=ai_prefix,
human_prefix=human_prefix,
prefix=prefix,
suffix=suffix,
format_instructions=format_instructions,
input_variables=input_variables,
)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
_output_parser = output_parser or cls._get_default_output_parser(
ai_prefix=ai_prefix,
)
return cls(
llm_chain=llm_chain,
allowed_tools=tool_names,
ai_prefix=ai_prefix,
output_parser=_output_parser,
**kwargs,
)