group-wbl/.venv/lib/python3.13/site-packages/onnxruntime/transformers/float16.py

502 lines
24 KiB
Python
Raw Permalink Normal View History

2026-01-09 09:48:03 +08:00
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# --------------------------------------------------------------------------
# This file is modified from https://github.com/microsoft/onnxconverter-common/blob/master/onnxconverter_common/float16.py
# Modifications:
# (1) Update default value of min_positive_val and max_finite_val
# (2) keep_io_types can be list of names
# (3) convert initializers if needed to preserve precision
# (4) add force_fp16_initializers option
# (5) handle Resize and GroupNorm with mixed float inputs
# (6) allow convert_float_to_float16 to accept model path
import itertools
import logging
import os
import tempfile
import numpy as np
import onnx
from onnx import AttributeProto, GraphProto, ModelProto, NodeProto, TensorProto, helper, numpy_helper
from onnx.shape_inference import infer_shapes, infer_shapes_path
from packaging import version
logger = logging.getLogger(__name__)
def _npfloat16_to_int(np_list):
"""
Convert numpy float16 to python int.
:param np_list: numpy float16 list
:return int_list: python int list
"""
return [int(bin(_.view("H"))[2:].zfill(16), 2) for _ in np_list]
def convert_np_to_float16(np_array, min_positive_val=5.96e-08, max_finite_val=65504.0):
"""
Convert float32 numpy array to float16 without changing sign or finiteness.
Positive values less than min_positive_val are mapped to min_positive_val.
Positive finite values greater than max_finite_val are mapped to max_finite_val.
Similar for negative values. NaN, 0, inf, and -inf are unchanged.
"""
def between(a, b, c):
return np.logical_and(a < b, b < c)
if np_array[np.where(np_array > 0)].shape[0] > 0:
positive_max = np_array[np.where(np_array > 0)].max()
positive_min = np_array[np.where(np_array > 0)].min()
if positive_max >= max_finite_val:
logger.debug(f"the float32 number {positive_max} will be truncated to {max_finite_val}")
if positive_min <= min_positive_val:
logger.debug(f"the float32 number {positive_min} will be truncated to {min_positive_val}")
if np_array[np.where(np_array < 0)].shape[0] > 0:
negative_max = np_array[np.where(np_array < 0)].max()
negative_min = np_array[np.where(np_array < 0)].min()
if negative_min <= -max_finite_val:
logger.debug(f"the float32 number {negative_min} will be truncated to {-max_finite_val}")
if negative_max >= -min_positive_val:
logger.debug(f"the float32 number {negative_max} will be truncated to {-min_positive_val}")
np_array = np.where(between(0, np_array, min_positive_val), min_positive_val, np_array)
np_array = np.where(between(-min_positive_val, np_array, 0), -min_positive_val, np_array)
np_array = np.where(between(max_finite_val, np_array, float("inf")), max_finite_val, np_array)
np_array = np.where(between(float("-inf"), np_array, -max_finite_val), -max_finite_val, np_array)
return np.float16(np_array)
def convert_tensor_float_to_float16(tensor, min_positive_val=5.96e-08, max_finite_val=65504.0):
"""Convert tensor float to float16.
Args:
tensor (TensorProto): the tensor to convert.
min_positive_val (float, optional): minimal positive value. Defaults to 1e-7.
max_finite_val (float, optional): maximal finite value. Defaults to 1e4.
Raises:
ValueError: input type is not TensorProto.
Returns:
TensorProto: the converted tensor.
"""
if not isinstance(tensor, TensorProto):
raise ValueError(f"Expected input type is an ONNX TensorProto but got {type(tensor)}")
if tensor.data_type == TensorProto.FLOAT:
tensor.data_type = TensorProto.FLOAT16
# convert float_data (float type) to float16 and write to int32_data
if tensor.float_data:
float16_data = convert_np_to_float16(np.array(tensor.float_data), min_positive_val, max_finite_val)
int_list = _npfloat16_to_int(float16_data)
tensor.int32_data[:] = int_list
tensor.float_data[:] = []
# convert raw_data (bytes type)
if tensor.raw_data:
# convert n.raw_data to float
float32_list = np.frombuffer(tensor.raw_data, dtype="float32")
# convert float to float16
float16_list = convert_np_to_float16(float32_list, min_positive_val, max_finite_val)
# convert float16 to bytes and write back to raw_data
tensor.raw_data = float16_list.tobytes()
return tensor
def make_value_info_from_tensor(tensor):
shape = numpy_helper.to_array(tensor).shape
return helper.make_tensor_value_info(tensor.name, tensor.data_type, shape)
DEFAULT_OP_BLOCK_LIST = [
"ArrayFeatureExtractor",
"Binarizer",
"CastMap",
"CategoryMapper",
"DictVectorizer",
"FeatureVectorizer",
"Imputer",
"LabelEncoder",
"LinearClassifier",
"LinearRegressor",
"Normalizer",
"OneHotEncoder",
"RandomUniformLike",
"SVMClassifier",
"SVMRegressor",
"Scaler",
"TreeEnsembleClassifier",
"TreeEnsembleRegressor",
"TreeEnsemble",
"ZipMap",
"NonMaxSuppression",
"TopK",
"RoiAlign",
"Range",
"CumSum",
"Min",
"Max",
"Upsample",
]
# Some operators has data type fixed as float for some inputs. Key is op_type, value is list of input indices
# Note that DirectML allows float16 gamma and beta in GroupNorm. Use force_fp16_inputs parameter could overwrite this.
ALWAYS_FLOAT_INPUTS = {"Resize": [2], "GroupNorm": [1, 2], "SkipGroupNorm": [1, 2]}
class InitializerTracker:
"""Class for keeping track of initializer."""
def __init__(self, initializer: TensorProto):
self.initializer = initializer
self.fp32_nodes = []
self.fp16_nodes = []
def add_node(self, node: NodeProto, is_node_blocked):
if is_node_blocked:
self.fp32_nodes.append(node)
else:
self.fp16_nodes.append(node)
def convert_float_to_float16(
model,
min_positive_val=5.96e-08,
max_finite_val=65504.0,
keep_io_types=False,
disable_shape_infer=False,
op_block_list=None,
node_block_list=None,
force_fp16_initializers=False,
force_fp16_inputs=None,
use_bfloat16_as_blocked_nodes_dtype=False,
):
"""Convert tensor float type in the input ONNX model to tensor float16.
Args:
model (ModelProto or str): The ONNX model or path of the model to convert.
min_positive_val (float, optional): minimal positive value. Defaults to 5.96e-08.
max_finite_val (float, optional): maximal finite value of float16. Defaults to 65504.
keep_io_types (Union[bool, List[str]], optional): It could be boolean or a list of float32 input/output names.
If True, model inputs/outputs should be left as float32.
Defaults to False.
disable_shape_infer (bool, optional): Skips running onnx shape/type inference.
Useful if shape inference has been done. Defaults to False.
op_block_list (List[str], optional): List of op types to leave as float32.
Defaults to None, which will use `float16.DEFAULT_OP_BLOCK_LIST`.
node_block_list (List[str], optional): List of node names to leave as float32. Defaults to None.
force_fp16_initializers(bool): force converting all float initializers to float16.
Default to false, which will convert only the one needed to avoid precision loss.
force_fp16_inputs(Dict[str, List[int]]): Force the conversion of the inputs of some operators to float16, even if
this script's preference it to keep them in float32.
Raises:
ValueError: input type is not ModelProto.
Returns:
ModelProto: converted model.
"""
assert min_positive_val >= 5.96e-08, (
"invalid min_positive_val. smallest positive float16 value: subnormal 5.96e-08, and normalized 6.104e-05"
)
assert max_finite_val <= float(np.finfo(np.float16).max), "invalid max_finite_val. largest float16 value: 65504"
force_fp16_inputs_dict = {} if force_fp16_inputs is None else force_fp16_inputs
if isinstance(model, str):
model_path = model
if version.parse(onnx.__version__) >= version.parse("1.8.0") and not disable_shape_infer:
# shape_infer_model_path should be in the same folder of model_path
with tempfile.NamedTemporaryFile(dir=os.path.dirname(model_path)) as tmpfile:
shape_infer_model_path = tmpfile.name
# infer_shapes_path can be used for model >2GB, and infer_shapes cannot.
infer_shapes_path(model_path, shape_infer_model_path)
model = onnx.load(shape_infer_model_path)
disable_shape_infer = True
else:
model = onnx.load(model_path)
if not isinstance(model, ModelProto):
raise ValueError(f"Expected an ONNX ModelProto but got {type(model)}")
func_infer_shape = None
if not disable_shape_infer and version.parse(onnx.__version__) >= version.parse("1.2.0"):
try:
func_infer_shape = infer_shapes
finally:
pass
# create blocklists
if op_block_list is None:
op_block_list = DEFAULT_OP_BLOCK_LIST
if node_block_list is None:
node_block_list = []
op_block_list = set(op_block_list)
node_block_list = set(node_block_list)
logger.debug(
f"fp16 parameters: min_positive_val={min_positive_val} max_finite_val={max_finite_val} keep_io_types={keep_io_types} disable_shape_infer={disable_shape_infer} op_block_list={op_block_list} node_block_list={node_block_list} force_fp16_initializers={force_fp16_initializers}"
)
# create a queue for BFS
queue = []
value_info_list = []
node_list = []
# Some operators (Like Resize or GroupNorm) have data type fixed as float for some input.
# When it is converted to float16, there are mixed types: some inputs are float32 and some are float16.
# This list keeps track of such nodes that are not in block list.
mixed_float_type_node_list = []
# type inference on input model
if func_infer_shape is not None:
model = func_infer_shape(model)
queue.append(model)
name_mapping = {}
graph_io_to_skip = set()
io_casts = set()
fp32_inputs = [n.name for n in model.graph.input if n.type.tensor_type.elem_type == TensorProto.FLOAT]
fp32_outputs = [n.name for n in model.graph.output if n.type.tensor_type.elem_type == TensorProto.FLOAT]
if isinstance(keep_io_types, list):
fp32_inputs = [n for n in fp32_inputs if n in keep_io_types]
fp32_outputs = [n for n in fp32_outputs if n in keep_io_types]
elif not keep_io_types:
fp32_inputs = []
fp32_outputs = []
for i, n in enumerate(model.graph.input):
if n.name in fp32_inputs:
output_name = "graph_input_cast_" + str(i)
name_mapping[n.name] = output_name
graph_io_to_skip.add(n.name)
node_name = "graph_input_cast" + str(i)
new_value_info = model.graph.value_info.add()
new_value_info.CopyFrom(n)
new_value_info.name = output_name
new_value_info.type.tensor_type.elem_type = TensorProto.FLOAT16
# add Cast node (from tensor(float) to tensor(float16) after graph input
new_node = [helper.make_node("Cast", [n.name], [output_name], to=TensorProto.FLOAT16, name=node_name)]
model.graph.node.extend(new_node)
value_info_list.append(new_value_info)
io_casts.add(node_name)
for i, n in enumerate(model.graph.output):
if n.name in fp32_outputs:
input_name = "graph_output_cast_" + str(i)
name_mapping[n.name] = input_name
graph_io_to_skip.add(n.name)
node_name = "graph_output_cast" + str(i)
# add Cast node (from tensor(float16) to tensor(float) before graph output
new_value_info = model.graph.value_info.add()
new_value_info.CopyFrom(n)
new_value_info.name = input_name
new_value_info.type.tensor_type.elem_type = TensorProto.FLOAT16
new_node = [helper.make_node("Cast", [input_name], [n.name], to=1, name=node_name)]
model.graph.node.extend(new_node)
value_info_list.append(new_value_info)
io_casts.add(node_name)
fp32_initializers: dict[str, InitializerTracker] = {}
while queue:
next_level = []
for q in queue:
# if q is model, push q.graph (GraphProto)
if isinstance(q, ModelProto):
next_level.append(q.graph)
# if q is model.graph, push q.node.attribute (AttributeProto)
if isinstance(q, GraphProto):
for n in q.initializer: # TensorProto type
if n.data_type == TensorProto.FLOAT:
assert n.name not in fp32_initializers
fp32_initializers[n.name] = InitializerTracker(n)
for n in q.node:
# if n is in the block list (doesn't support float16), no conversion for the node,
# and save the node for further processing
if n.name in io_casts:
continue
for i in range(len(n.input)):
if n.input[i] in name_mapping:
n.input[i] = name_mapping[n.input[i]]
for i in range(len(n.output)):
if n.output[i] in name_mapping:
n.output[i] = name_mapping[n.output[i]]
is_node_blocked = n.op_type in op_block_list or n.name in node_block_list
for i, input_name in enumerate(n.input):
if input_name in fp32_initializers:
# For Resize/GroupNorm, only the first input can be float16
use_fp32_weight = is_node_blocked or (
i in ALWAYS_FLOAT_INPUTS.get(n.op_type, [])
and i not in force_fp16_inputs_dict.get(n.op_type, [])
)
fp32_initializers[input_name].add_node(n, use_fp32_weight)
if is_node_blocked:
node_list.append(n)
else:
if n.op_type == "Cast":
for attr in n.attribute:
if attr.name == "to" and attr.i == TensorProto.FLOAT:
attr.i = TensorProto.FLOAT16
break
if n.op_type in [
"EyeLike",
"Multinomial",
"RandomNormal",
"RandomNormalLike",
"RandomUniform",
"RandomUniformLike",
"SequenceEmpty",
"Bernoulli",
]:
has_dtype = False
for attr in n.attribute:
if attr.name == "dtype":
has_dtype = True
if attr.i == TensorProto.FLOAT:
attr.i = TensorProto.FLOAT16
# The dtype attribute is optional and default is FLOAT in the following operators
# so we need add dtype attribute to specify the data type float16
if (n.op_type in ["RandomNormal", "RandomUniform", "SequenceEmpty"]) and not has_dtype:
n.attribute.extend([helper.make_attribute("dtype", TensorProto.FLOAT16)])
# For Resize/GroupNorm, attribute data type cannot be changed
if n.op_type not in ALWAYS_FLOAT_INPUTS or n.op_type in force_fp16_inputs_dict:
for attr in n.attribute:
next_level.append(attr) # noqa: PERF402
else:
mixed_float_type_node_list.append(n)
# if q is model.graph.node.attribute, push q.g and q.graphs (GraphProto)
# and process node.attribute.t and node.attribute.tensors (TensorProto)
if isinstance(q, AttributeProto):
next_level.append(q.g)
for n in q.graphs:
next_level.append(n) # noqa: PERF402
q.t.CopyFrom(convert_tensor_float_to_float16(q.t, min_positive_val, max_finite_val))
for n in q.tensors:
n = convert_tensor_float_to_float16(n, min_positive_val, max_finite_val) # noqa: PLW2901
# if q is graph, process input, output and value_info (ValueInfoProto)
if isinstance(q, GraphProto):
# Note that float initializers tracked by fp32_initializers will be processed later.
# for all ValueInfoProto with tensor(float) type in input, output and value_info, convert them to
# tensor(float16) except map and seq(map). And save them in value_info_list for further processing
for n in itertools.chain(q.input, q.output, q.value_info):
if n.type.tensor_type.elem_type == TensorProto.FLOAT:
if n.name not in graph_io_to_skip:
n.type.tensor_type.elem_type = TensorProto.FLOAT16
value_info_list.append(n)
if n.type.HasField("sequence_type"):
if n.type.sequence_type.elem_type.tensor_type.elem_type == TensorProto.FLOAT:
if n.name not in graph_io_to_skip:
n.type.sequence_type.elem_type.tensor_type.elem_type = TensorProto.FLOAT16
value_info_list.append(n)
queue = next_level
for value in fp32_initializers.values():
# By default, to avoid precision loss, do not convert an initializer to fp16 when it is used only by fp32 nodes.
if force_fp16_initializers or value.fp16_nodes:
value.initializer = convert_tensor_float_to_float16(value.initializer, min_positive_val, max_finite_val)
value_info_list.append(make_value_info_from_tensor(value.initializer))
if value.fp32_nodes and not force_fp16_initializers:
logger.info(
f"initializer is used by both fp32 and fp16 nodes. Consider add these nodes to block list:{value.fp16_nodes}"
)
# Some operators have data type fixed as float for some input. Add a float16 to float cast for those inputs.
for node in mixed_float_type_node_list:
for i, input_name in enumerate(node.input):
if i not in ALWAYS_FLOAT_INPUTS[node.op_type] or i in force_fp16_inputs_dict.get(node.op_type, []):
continue
for value_info in value_info_list:
if input_name == value_info.name:
# create new value_info for current node's new input name
new_value_info = model.graph.value_info.add()
new_value_info.CopyFrom(value_info)
output_name = node.name + "_input_cast_" + str(i)
new_value_info.name = output_name
new_value_info.type.tensor_type.elem_type = TensorProto.FLOAT
# add Cast node (from tensor(float16) to tensor(float) before current node
node_name = node.name + "_input_cast" + str(i)
new_node = [helper.make_node("Cast", [input_name], [output_name], to=1, name=node_name)]
model.graph.node.extend(new_node)
# change current node's input name
node.input[i] = output_name
break
accuracy_type = TensorProto.BFLOAT16 if use_bfloat16_as_blocked_nodes_dtype else TensorProto.FLOAT
# process the nodes in block list that doesn't support tensor(float16)
for node in node_list:
# if input's name is in the value_info_list meaning input is tensor(float16) type,
# insert a float16 to float Cast node before the node,
# change current node's input name and create new value_info for the new name
for i in range(len(node.input)):
input_name = node.input[i]
for value_info in value_info_list:
if input_name == value_info.name:
# create new value_info for current node's new input name
new_value_info = model.graph.value_info.add()
new_value_info.CopyFrom(value_info)
output_name = node.name + "_input_cast_" + str(i)
new_value_info.name = output_name
new_value_info.type.tensor_type.elem_type = accuracy_type
# add Cast node (from tensor(float16) to tensor(float) before current node
node_name = node.name + "_input_cast" + str(i)
new_node = [helper.make_node("Cast", [input_name], [output_name], to=accuracy_type, name=node_name)]
model.graph.node.extend(new_node)
# change current node's input name
node.input[i] = output_name
break
# if output's name is in the value_info_list meaning output is tensor(float16) type, insert a float to
# float16 Cast node after the node, change current node's output name and create new value_info for the new name
for i in range(len(node.output)):
output = node.output[i]
for value_info in value_info_list:
if output == value_info.name:
# create new value_info for current node's new output
new_value_info = model.graph.value_info.add()
new_value_info.CopyFrom(value_info)
input_name = node.name + "_output_cast_" + str(i)
new_value_info.name = input_name
new_value_info.type.tensor_type.elem_type = accuracy_type
# add Cast node (from tensor(float) to tensor(float16) after current node
node_name = node.name + "_output_cast" + str(i)
new_node = [helper.make_node("Cast", [input_name], [output], to=10, name=node_name)]
model.graph.node.extend(new_node)
# change current node's input name
node.output[i] = input_name
break
return model
def float_to_float16_max_diff(tensor, min_positive_val=5.96e-08, max_finite_val=65504.0):
"""Measure the maximum absolute difference after converting a float tensor to float16."""
if not isinstance(tensor, TensorProto):
raise ValueError(f"Expected input type is an ONNX TensorProto but got {type(tensor)}")
if tensor.data_type != TensorProto.FLOAT:
raise ValueError("Expected tensor data type is float.")
float32_data = None
if tensor.float_data:
float32_data = np.array(tensor.float_data)
if tensor.raw_data:
float32_data = np.frombuffer(tensor.raw_data, dtype="float32")
if float32_data is None:
raise RuntimeError("external data not loaded!")
float16_data = convert_np_to_float16(float32_data, min_positive_val, max_finite_val)
return np.amax(np.abs(float32_data - np.float32(float16_data)))