463 lines
15 KiB
Python
463 lines
15 KiB
Python
|
|
from __future__ import annotations
|
|||
|
|
|
|||
|
|
import asyncio
|
|||
|
|
import functools
|
|||
|
|
import logging
|
|||
|
|
from typing import (
|
|||
|
|
Any,
|
|||
|
|
AsyncIterable,
|
|||
|
|
AsyncIterator,
|
|||
|
|
Callable,
|
|||
|
|
Dict,
|
|||
|
|
Iterable,
|
|||
|
|
Iterator,
|
|||
|
|
List,
|
|||
|
|
Mapping,
|
|||
|
|
Optional,
|
|||
|
|
Tuple,
|
|||
|
|
TypeVar,
|
|||
|
|
)
|
|||
|
|
|
|||
|
|
from langchain_core.callbacks import (
|
|||
|
|
AsyncCallbackManagerForLLMRun,
|
|||
|
|
CallbackManagerForLLMRun,
|
|||
|
|
)
|
|||
|
|
from langchain_core.language_models.llms import BaseLLM
|
|||
|
|
from langchain_core.outputs import Generation, GenerationChunk, LLMResult
|
|||
|
|
from langchain_core.utils import get_from_dict_or_env, pre_init
|
|||
|
|
from pydantic import Field
|
|||
|
|
from requests.exceptions import HTTPError
|
|||
|
|
from tenacity import (
|
|||
|
|
before_sleep_log,
|
|||
|
|
retry,
|
|||
|
|
retry_if_exception_type,
|
|||
|
|
stop_after_attempt,
|
|||
|
|
wait_exponential,
|
|||
|
|
)
|
|||
|
|
|
|||
|
|
logger = logging.getLogger(__name__)
|
|||
|
|
T = TypeVar("T")
|
|||
|
|
|
|||
|
|
|
|||
|
|
def _create_retry_decorator(llm: Tongyi) -> Callable[[Any], Any]:
|
|||
|
|
min_seconds = 1
|
|||
|
|
max_seconds = 4
|
|||
|
|
# Wait 2^x * 1 second between each retry starting with
|
|||
|
|
# 4 seconds, then up to 10 seconds, then 10 seconds afterward
|
|||
|
|
return retry(
|
|||
|
|
reraise=True,
|
|||
|
|
stop=stop_after_attempt(llm.max_retries),
|
|||
|
|
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
|
|||
|
|
retry=(retry_if_exception_type(HTTPError)),
|
|||
|
|
before_sleep=before_sleep_log(logger, logging.WARNING),
|
|||
|
|
)
|
|||
|
|
|
|||
|
|
|
|||
|
|
def check_response(resp: Any) -> Any:
|
|||
|
|
"""Check the response from the completion call."""
|
|||
|
|
if resp["status_code"] == 200:
|
|||
|
|
return resp
|
|||
|
|
elif resp["status_code"] in [400, 401]:
|
|||
|
|
raise ValueError(
|
|||
|
|
f"request_id: {resp['request_id']} \n "
|
|||
|
|
f"status_code: {resp['status_code']} \n "
|
|||
|
|
f"code: {resp['code']} \n message: {resp['message']}"
|
|||
|
|
)
|
|||
|
|
else:
|
|||
|
|
raise HTTPError(
|
|||
|
|
f"HTTP error occurred: status_code: {resp['status_code']} \n "
|
|||
|
|
f"code: {resp['code']} \n message: {resp['message']}",
|
|||
|
|
response=resp,
|
|||
|
|
)
|
|||
|
|
|
|||
|
|
|
|||
|
|
def generate_with_retry(llm: Tongyi, **kwargs: Any) -> Any:
|
|||
|
|
"""Use tenacity to retry the completion call."""
|
|||
|
|
retry_decorator = _create_retry_decorator(llm)
|
|||
|
|
|
|||
|
|
@retry_decorator
|
|||
|
|
def _generate_with_retry(**_kwargs: Any) -> Any:
|
|||
|
|
resp = llm.client.call(**_kwargs)
|
|||
|
|
return check_response(resp)
|
|||
|
|
|
|||
|
|
return _generate_with_retry(**kwargs)
|
|||
|
|
|
|||
|
|
|
|||
|
|
def stream_generate_with_retry(llm: Tongyi, **kwargs: Any) -> Any:
|
|||
|
|
"""Use tenacity to retry the completion call."""
|
|||
|
|
retry_decorator = _create_retry_decorator(llm)
|
|||
|
|
|
|||
|
|
@retry_decorator
|
|||
|
|
def _stream_generate_with_retry(**_kwargs: Any) -> Any:
|
|||
|
|
responses = llm.client.call(**_kwargs)
|
|||
|
|
for resp in responses:
|
|||
|
|
yield check_response(resp)
|
|||
|
|
|
|||
|
|
return _stream_generate_with_retry(**kwargs)
|
|||
|
|
|
|||
|
|
|
|||
|
|
async def astream_generate_with_retry(llm: Tongyi, **kwargs: Any) -> Any:
|
|||
|
|
"""Async version of `stream_generate_with_retry`.
|
|||
|
|
|
|||
|
|
Because the dashscope SDK doesn't provide an async API,
|
|||
|
|
we wrap `stream_generate_with_retry` with an async generator."""
|
|||
|
|
|
|||
|
|
class _AioTongyiGenerator:
|
|||
|
|
def __init__(self, _llm: Tongyi, **_kwargs: Any):
|
|||
|
|
self.generator = stream_generate_with_retry(_llm, **_kwargs)
|
|||
|
|
|
|||
|
|
def __aiter__(self) -> AsyncIterator[Any]:
|
|||
|
|
return self
|
|||
|
|
|
|||
|
|
async def __anext__(self) -> Any:
|
|||
|
|
value = await asyncio.get_running_loop().run_in_executor(
|
|||
|
|
None, self._safe_next
|
|||
|
|
)
|
|||
|
|
if value is not None:
|
|||
|
|
return value
|
|||
|
|
else:
|
|||
|
|
raise StopAsyncIteration
|
|||
|
|
|
|||
|
|
def _safe_next(self) -> Any:
|
|||
|
|
try:
|
|||
|
|
return next(self.generator)
|
|||
|
|
except StopIteration:
|
|||
|
|
return None
|
|||
|
|
|
|||
|
|
async for chunk in _AioTongyiGenerator(llm, **kwargs):
|
|||
|
|
yield chunk
|
|||
|
|
|
|||
|
|
|
|||
|
|
def generate_with_last_element_mark(iterable: Iterable[T]) -> Iterator[Tuple[T, bool]]:
|
|||
|
|
"""Generate elements from an iterable,
|
|||
|
|
and a boolean indicating if it is the last element."""
|
|||
|
|
iterator = iter(iterable)
|
|||
|
|
try:
|
|||
|
|
item = next(iterator)
|
|||
|
|
except StopIteration:
|
|||
|
|
return
|
|||
|
|
for next_item in iterator:
|
|||
|
|
yield item, False
|
|||
|
|
item = next_item
|
|||
|
|
yield item, True
|
|||
|
|
|
|||
|
|
|
|||
|
|
async def agenerate_with_last_element_mark(
|
|||
|
|
iterable: AsyncIterable[T],
|
|||
|
|
) -> AsyncIterator[Tuple[T, bool]]:
|
|||
|
|
"""Generate elements from an async iterable,
|
|||
|
|
and a boolean indicating if it is the last element."""
|
|||
|
|
iterator = iterable.__aiter__()
|
|||
|
|
try:
|
|||
|
|
item = await iterator.__anext__()
|
|||
|
|
except StopAsyncIteration:
|
|||
|
|
return
|
|||
|
|
async for next_item in iterator:
|
|||
|
|
yield item, False
|
|||
|
|
item = next_item
|
|||
|
|
yield item, True
|
|||
|
|
|
|||
|
|
|
|||
|
|
class Tongyi(BaseLLM):
|
|||
|
|
"""Tongyi completion model integration.
|
|||
|
|
|
|||
|
|
Setup:
|
|||
|
|
Install ``dashscope`` and set environment variables ``DASHSCOPE_API_KEY``.
|
|||
|
|
|
|||
|
|
.. code-block:: bash
|
|||
|
|
|
|||
|
|
pip install dashscope
|
|||
|
|
export DASHSCOPE_API_KEY="your-api-key"
|
|||
|
|
|
|||
|
|
Key init args — completion params:
|
|||
|
|
model: str
|
|||
|
|
Name of Tongyi model to use.
|
|||
|
|
top_p: float
|
|||
|
|
Total probability mass of tokens to consider at each step.
|
|||
|
|
streaming: bool
|
|||
|
|
Whether to stream the results or not.
|
|||
|
|
|
|||
|
|
Key init args — client params:
|
|||
|
|
api_key: Optional[str]
|
|||
|
|
Dashscope API KEY. If not passed in will be read from env var DASHSCOPE_API_KEY.
|
|||
|
|
max_retries: int
|
|||
|
|
Maximum number of retries to make when generating.
|
|||
|
|
|
|||
|
|
See full list of supported init args and their descriptions in the params section.
|
|||
|
|
|
|||
|
|
Instantiate:
|
|||
|
|
.. code-block:: python
|
|||
|
|
|
|||
|
|
from langchain_community.llms import Tongyi
|
|||
|
|
|
|||
|
|
llm = Tongyi(
|
|||
|
|
model="qwen-max",
|
|||
|
|
# top_p="...",
|
|||
|
|
# api_key="...",
|
|||
|
|
# other params...
|
|||
|
|
)
|
|||
|
|
|
|||
|
|
Invoke:
|
|||
|
|
.. code-block:: python
|
|||
|
|
|
|||
|
|
input_text = "用50个字左右阐述,生命的意义在于"
|
|||
|
|
llm.invoke(input_text)
|
|||
|
|
|
|||
|
|
.. code-block:: python
|
|||
|
|
|
|||
|
|
'探索、成长、连接与爱——在有限的时间里,不断学习、体验、贡献并寻找与世界和谐共存之道,让每一刻充满价值与意义。'
|
|||
|
|
|
|||
|
|
Stream:
|
|||
|
|
.. code-block:: python
|
|||
|
|
|
|||
|
|
for chunk in llm.stream(input_text):
|
|||
|
|
print(chunk)
|
|||
|
|
|
|||
|
|
.. code-block:: python
|
|||
|
|
|
|||
|
|
探索 | 、 | 成长 | 、连接与爱。 | 在有限的时间里,寻找个人价值, | 贡献于他人,共同体验世界的美好 | ,让世界因自己的存在而更 | 温暖。
|
|||
|
|
|
|||
|
|
Async:
|
|||
|
|
.. code-block:: python
|
|||
|
|
|
|||
|
|
await llm.ainvoke(input_text)
|
|||
|
|
|
|||
|
|
# stream:
|
|||
|
|
# async for chunk in llm.astream(input_text):
|
|||
|
|
# print(chunk)
|
|||
|
|
|
|||
|
|
# batch:
|
|||
|
|
# await llm.abatch([input_text])
|
|||
|
|
|
|||
|
|
.. code-block:: python
|
|||
|
|
|
|||
|
|
'探索、成长、连接与爱。在有限的时间里,寻找个人价值,贡献于他人和社会,体验丰富多彩的情感与经历,不断学习进步,让世界因自己的存在而更美好。'
|
|||
|
|
|
|||
|
|
""" # noqa: E501
|
|||
|
|
|
|||
|
|
@property
|
|||
|
|
def lc_secrets(self) -> Dict[str, str]:
|
|||
|
|
return {"dashscope_api_key": "DASHSCOPE_API_KEY"}
|
|||
|
|
|
|||
|
|
client: Any = None #: :meta private:
|
|||
|
|
model_name: str = Field(default="qwen-plus", alias="model")
|
|||
|
|
|
|||
|
|
"""Model name to use."""
|
|||
|
|
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
|||
|
|
|
|||
|
|
top_p: float = 0.8
|
|||
|
|
"""Total probability mass of tokens to consider at each step."""
|
|||
|
|
|
|||
|
|
dashscope_api_key: Optional[str] = Field(default=None, alias="api_key")
|
|||
|
|
"""Dashscope api key provide by Alibaba Cloud."""
|
|||
|
|
|
|||
|
|
streaming: bool = False
|
|||
|
|
"""Whether to stream the results or not."""
|
|||
|
|
|
|||
|
|
max_retries: int = 10
|
|||
|
|
"""Maximum number of retries to make when generating."""
|
|||
|
|
|
|||
|
|
@property
|
|||
|
|
def _llm_type(self) -> str:
|
|||
|
|
"""Return type of llm."""
|
|||
|
|
return "tongyi"
|
|||
|
|
|
|||
|
|
@pre_init
|
|||
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|||
|
|
"""Validate that api key and python package exists in environment."""
|
|||
|
|
values["dashscope_api_key"] = get_from_dict_or_env(
|
|||
|
|
values, ["dashscope_api_key", "api_key"], "DASHSCOPE_API_KEY"
|
|||
|
|
)
|
|||
|
|
try:
|
|||
|
|
import dashscope
|
|||
|
|
except ImportError:
|
|||
|
|
raise ImportError(
|
|||
|
|
"Could not import dashscope python package. "
|
|||
|
|
"Please install it with `pip install dashscope`."
|
|||
|
|
)
|
|||
|
|
try:
|
|||
|
|
values["client"] = dashscope.Generation
|
|||
|
|
except AttributeError:
|
|||
|
|
raise ValueError(
|
|||
|
|
"`dashscope` has no `Generation` attribute, this is likely "
|
|||
|
|
"due to an old version of the dashscope package. Try upgrading it "
|
|||
|
|
"with `pip install --upgrade dashscope`."
|
|||
|
|
)
|
|||
|
|
|
|||
|
|
return values
|
|||
|
|
|
|||
|
|
@property
|
|||
|
|
def _default_params(self) -> Dict[str, Any]:
|
|||
|
|
"""Get the default parameters for calling Tongyi Qwen API."""
|
|||
|
|
normal_params = {
|
|||
|
|
"model": self.model_name,
|
|||
|
|
"top_p": self.top_p,
|
|||
|
|
"api_key": self.dashscope_api_key,
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
return {**normal_params, **self.model_kwargs}
|
|||
|
|
|
|||
|
|
@property
|
|||
|
|
def _identifying_params(self) -> Mapping[str, Any]:
|
|||
|
|
return {"model_name": self.model_name, **super()._identifying_params}
|
|||
|
|
|
|||
|
|
def _generate(
|
|||
|
|
self,
|
|||
|
|
prompts: List[str],
|
|||
|
|
stop: Optional[List[str]] = None,
|
|||
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|||
|
|
**kwargs: Any,
|
|||
|
|
) -> LLMResult:
|
|||
|
|
generations = []
|
|||
|
|
if self.streaming:
|
|||
|
|
if len(prompts) > 1:
|
|||
|
|
raise ValueError("Cannot stream results with multiple prompts.")
|
|||
|
|
generation: Optional[GenerationChunk] = None
|
|||
|
|
for chunk in self._stream(prompts[0], stop, run_manager, **kwargs):
|
|||
|
|
if generation is None:
|
|||
|
|
generation = chunk
|
|||
|
|
else:
|
|||
|
|
generation += chunk
|
|||
|
|
assert generation is not None
|
|||
|
|
generations.append([self._chunk_to_generation(generation)])
|
|||
|
|
else:
|
|||
|
|
params: Dict[str, Any] = self._invocation_params(stop=stop, **kwargs)
|
|||
|
|
for prompt in prompts:
|
|||
|
|
completion = generate_with_retry(self, prompt=prompt, **params)
|
|||
|
|
generations.append(
|
|||
|
|
[Generation(**self._generation_from_qwen_resp(completion))]
|
|||
|
|
)
|
|||
|
|
return LLMResult(
|
|||
|
|
generations=generations,
|
|||
|
|
llm_output={
|
|||
|
|
"model_name": self.model_name,
|
|||
|
|
},
|
|||
|
|
)
|
|||
|
|
|
|||
|
|
async def _agenerate(
|
|||
|
|
self,
|
|||
|
|
prompts: List[str],
|
|||
|
|
stop: Optional[List[str]] = None,
|
|||
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|||
|
|
**kwargs: Any,
|
|||
|
|
) -> LLMResult:
|
|||
|
|
generations = []
|
|||
|
|
if self.streaming:
|
|||
|
|
if len(prompts) > 1:
|
|||
|
|
raise ValueError("Cannot stream results with multiple prompts.")
|
|||
|
|
generation: Optional[GenerationChunk] = None
|
|||
|
|
async for chunk in self._astream(prompts[0], stop, run_manager, **kwargs):
|
|||
|
|
if generation is None:
|
|||
|
|
generation = chunk
|
|||
|
|
else:
|
|||
|
|
generation += chunk
|
|||
|
|
assert generation is not None
|
|||
|
|
generations.append([self._chunk_to_generation(generation)])
|
|||
|
|
else:
|
|||
|
|
params: Dict[str, Any] = self._invocation_params(stop=stop, **kwargs)
|
|||
|
|
for prompt in prompts:
|
|||
|
|
completion = await asyncio.get_running_loop().run_in_executor(
|
|||
|
|
None,
|
|||
|
|
functools.partial(
|
|||
|
|
generate_with_retry, **{"llm": self, "prompt": prompt, **params}
|
|||
|
|
),
|
|||
|
|
)
|
|||
|
|
generations.append(
|
|||
|
|
[Generation(**self._generation_from_qwen_resp(completion))]
|
|||
|
|
)
|
|||
|
|
return LLMResult(
|
|||
|
|
generations=generations,
|
|||
|
|
llm_output={
|
|||
|
|
"model_name": self.model_name,
|
|||
|
|
},
|
|||
|
|
)
|
|||
|
|
|
|||
|
|
def _stream(
|
|||
|
|
self,
|
|||
|
|
prompt: str,
|
|||
|
|
stop: Optional[List[str]] = None,
|
|||
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|||
|
|
**kwargs: Any,
|
|||
|
|
) -> Iterator[GenerationChunk]:
|
|||
|
|
params: Dict[str, Any] = self._invocation_params(
|
|||
|
|
stop=stop, stream=True, **kwargs
|
|||
|
|
)
|
|||
|
|
for stream_resp, is_last_chunk in generate_with_last_element_mark(
|
|||
|
|
stream_generate_with_retry(self, prompt=prompt, **params)
|
|||
|
|
):
|
|||
|
|
chunk = GenerationChunk(
|
|||
|
|
**self._generation_from_qwen_resp(stream_resp, is_last_chunk)
|
|||
|
|
)
|
|||
|
|
if run_manager:
|
|||
|
|
run_manager.on_llm_new_token(
|
|||
|
|
chunk.text,
|
|||
|
|
chunk=chunk,
|
|||
|
|
verbose=self.verbose,
|
|||
|
|
)
|
|||
|
|
yield chunk
|
|||
|
|
|
|||
|
|
async def _astream(
|
|||
|
|
self,
|
|||
|
|
prompt: str,
|
|||
|
|
stop: Optional[List[str]] = None,
|
|||
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|||
|
|
**kwargs: Any,
|
|||
|
|
) -> AsyncIterator[GenerationChunk]:
|
|||
|
|
params: Dict[str, Any] = self._invocation_params(
|
|||
|
|
stop=stop, stream=True, **kwargs
|
|||
|
|
)
|
|||
|
|
async for stream_resp, is_last_chunk in agenerate_with_last_element_mark(
|
|||
|
|
astream_generate_with_retry(self, prompt=prompt, **params)
|
|||
|
|
):
|
|||
|
|
chunk = GenerationChunk(
|
|||
|
|
**self._generation_from_qwen_resp(stream_resp, is_last_chunk)
|
|||
|
|
)
|
|||
|
|
if run_manager:
|
|||
|
|
await run_manager.on_llm_new_token(
|
|||
|
|
chunk.text,
|
|||
|
|
chunk=chunk,
|
|||
|
|
verbose=self.verbose,
|
|||
|
|
)
|
|||
|
|
yield chunk
|
|||
|
|
|
|||
|
|
def _invocation_params(self, stop: Any, **kwargs: Any) -> Dict[str, Any]:
|
|||
|
|
params = {
|
|||
|
|
**self._default_params,
|
|||
|
|
**kwargs,
|
|||
|
|
}
|
|||
|
|
if stop is not None:
|
|||
|
|
params["stop"] = stop
|
|||
|
|
if params.get("stream"):
|
|||
|
|
params["incremental_output"] = True
|
|||
|
|
return params
|
|||
|
|
|
|||
|
|
@staticmethod
|
|||
|
|
def _generation_from_qwen_resp(
|
|||
|
|
resp: Any, is_last_chunk: bool = True
|
|||
|
|
) -> Dict[str, Any]:
|
|||
|
|
# According to the response from dashscope,
|
|||
|
|
# each chunk's `generation_info` overwrites the previous one.
|
|||
|
|
# Besides, The `merge_dicts` method,
|
|||
|
|
# which is used to concatenate `generation_info` in `GenerationChunk`,
|
|||
|
|
# does not support merging of int type values.
|
|||
|
|
# Therefore, we adopt the `generation_info` of the last chunk
|
|||
|
|
# and discard the `generation_info` of the intermediate chunks.
|
|||
|
|
if is_last_chunk:
|
|||
|
|
return dict(
|
|||
|
|
text=resp["output"]["text"],
|
|||
|
|
generation_info=dict(
|
|||
|
|
finish_reason=resp["output"]["finish_reason"],
|
|||
|
|
request_id=resp["request_id"],
|
|||
|
|
token_usage=dict(resp["usage"]),
|
|||
|
|
),
|
|||
|
|
)
|
|||
|
|
else:
|
|||
|
|
return dict(text=resp["output"]["text"])
|
|||
|
|
|
|||
|
|
@staticmethod
|
|||
|
|
def _chunk_to_generation(chunk: GenerationChunk) -> Generation:
|
|||
|
|
return Generation(
|
|||
|
|
text=chunk.text,
|
|||
|
|
generation_info=chunk.generation_info,
|
|||
|
|
)
|