588 lines
21 KiB
Python
588 lines
21 KiB
Python
|
|
from typing import TYPE_CHECKING, Optional, Union, List, cast, Dict, Any, Tuple
|
||
|
|
|
||
|
|
from chromadb.api.models.CollectionCommon import CollectionCommon
|
||
|
|
from chromadb.api.types import (
|
||
|
|
URI,
|
||
|
|
CollectionMetadata,
|
||
|
|
Embedding,
|
||
|
|
PyEmbedding,
|
||
|
|
Include,
|
||
|
|
Metadata,
|
||
|
|
Document,
|
||
|
|
Image,
|
||
|
|
Where,
|
||
|
|
IDs,
|
||
|
|
GetResult,
|
||
|
|
QueryResult,
|
||
|
|
ID,
|
||
|
|
OneOrMany,
|
||
|
|
WhereDocument,
|
||
|
|
SearchResult,
|
||
|
|
maybe_cast_one_to_many,
|
||
|
|
)
|
||
|
|
from chromadb.api.collection_configuration import UpdateCollectionConfiguration
|
||
|
|
from chromadb.execution.expression.plan import Search
|
||
|
|
|
||
|
|
import logging
|
||
|
|
|
||
|
|
from chromadb.api.functions import Function
|
||
|
|
|
||
|
|
if TYPE_CHECKING:
|
||
|
|
from chromadb.api.models.AttachedFunction import AttachedFunction
|
||
|
|
|
||
|
|
logger = logging.getLogger(__name__)
|
||
|
|
|
||
|
|
if TYPE_CHECKING:
|
||
|
|
from chromadb.api import ServerAPI # noqa: F401
|
||
|
|
|
||
|
|
|
||
|
|
class Collection(CollectionCommon["ServerAPI"]):
|
||
|
|
def count(self) -> int:
|
||
|
|
"""The total number of embeddings added to the database
|
||
|
|
|
||
|
|
Returns:
|
||
|
|
int: The total number of embeddings added to the database
|
||
|
|
|
||
|
|
"""
|
||
|
|
return self._client._count(
|
||
|
|
collection_id=self.id,
|
||
|
|
tenant=self.tenant,
|
||
|
|
database=self.database,
|
||
|
|
)
|
||
|
|
|
||
|
|
def add(
|
||
|
|
self,
|
||
|
|
ids: OneOrMany[ID],
|
||
|
|
embeddings: Optional[
|
||
|
|
Union[
|
||
|
|
OneOrMany[Embedding],
|
||
|
|
OneOrMany[PyEmbedding],
|
||
|
|
]
|
||
|
|
] = None,
|
||
|
|
metadatas: Optional[OneOrMany[Metadata]] = None,
|
||
|
|
documents: Optional[OneOrMany[Document]] = None,
|
||
|
|
images: Optional[OneOrMany[Image]] = None,
|
||
|
|
uris: Optional[OneOrMany[URI]] = None,
|
||
|
|
) -> None:
|
||
|
|
"""Add embeddings to the data store.
|
||
|
|
Args:
|
||
|
|
ids: The ids of the embeddings you wish to add
|
||
|
|
embeddings: The embeddings to add. If None, embeddings will be computed based on the documents or images using the embedding_function set for the Collection. Optional.
|
||
|
|
metadatas: The metadata to associate with the embeddings. When querying, you can filter on this metadata. Optional.
|
||
|
|
documents: The documents to associate with the embeddings. Optional.
|
||
|
|
images: The images to associate with the embeddings. Optional.
|
||
|
|
uris: The uris of the images to associate with the embeddings. Optional.
|
||
|
|
|
||
|
|
Returns:
|
||
|
|
None
|
||
|
|
|
||
|
|
Raises:
|
||
|
|
ValueError: If you don't provide either embeddings or documents
|
||
|
|
ValueError: If the length of ids, embeddings, metadatas, or documents don't match
|
||
|
|
ValueError: If you don't provide an embedding function and don't provide embeddings
|
||
|
|
ValueError: If you provide both embeddings and documents
|
||
|
|
ValueError: If you provide an id that already exists
|
||
|
|
|
||
|
|
"""
|
||
|
|
|
||
|
|
add_request = self._validate_and_prepare_add_request(
|
||
|
|
ids=ids,
|
||
|
|
embeddings=embeddings,
|
||
|
|
metadatas=metadatas,
|
||
|
|
documents=documents,
|
||
|
|
images=images,
|
||
|
|
uris=uris,
|
||
|
|
)
|
||
|
|
|
||
|
|
self._client._add(
|
||
|
|
collection_id=self.id,
|
||
|
|
ids=add_request["ids"],
|
||
|
|
embeddings=add_request["embeddings"],
|
||
|
|
metadatas=add_request["metadatas"],
|
||
|
|
documents=add_request["documents"],
|
||
|
|
uris=add_request["uris"],
|
||
|
|
tenant=self.tenant,
|
||
|
|
database=self.database,
|
||
|
|
)
|
||
|
|
|
||
|
|
def get(
|
||
|
|
self,
|
||
|
|
ids: Optional[OneOrMany[ID]] = None,
|
||
|
|
where: Optional[Where] = None,
|
||
|
|
limit: Optional[int] = None,
|
||
|
|
offset: Optional[int] = None,
|
||
|
|
where_document: Optional[WhereDocument] = None,
|
||
|
|
include: Include = ["metadatas", "documents"],
|
||
|
|
) -> GetResult:
|
||
|
|
"""Get embeddings and their associate data from the data store. If no ids or where filter is provided returns
|
||
|
|
all embeddings up to limit starting at offset.
|
||
|
|
|
||
|
|
Args:
|
||
|
|
ids: The ids of the embeddings to get. Optional.
|
||
|
|
where: A Where type dict used to filter results by. E.g. `{"$and": [{"color" : "red"}, {"price": {"$gte": 4.20}}]}`. Optional.
|
||
|
|
limit: The number of documents to return. Optional.
|
||
|
|
offset: The offset to start returning results from. Useful for paging results with limit. Optional.
|
||
|
|
where_document: A WhereDocument type dict used to filter by the documents. E.g. `{"$contains": "hello"}`. Optional.
|
||
|
|
include: A list of what to include in the results. Can contain `"embeddings"`, `"metadatas"`, `"documents"`. Ids are always included. Defaults to `["metadatas", "documents"]`. Optional.
|
||
|
|
|
||
|
|
Returns:
|
||
|
|
GetResult: A GetResult object containing the results.
|
||
|
|
|
||
|
|
"""
|
||
|
|
get_request = self._validate_and_prepare_get_request(
|
||
|
|
ids=ids,
|
||
|
|
where=where,
|
||
|
|
where_document=where_document,
|
||
|
|
include=include,
|
||
|
|
)
|
||
|
|
|
||
|
|
get_results = self._client._get(
|
||
|
|
collection_id=self.id,
|
||
|
|
ids=get_request["ids"],
|
||
|
|
where=get_request["where"],
|
||
|
|
where_document=get_request["where_document"],
|
||
|
|
include=get_request["include"],
|
||
|
|
limit=limit,
|
||
|
|
offset=offset,
|
||
|
|
tenant=self.tenant,
|
||
|
|
database=self.database,
|
||
|
|
)
|
||
|
|
return self._transform_get_response(
|
||
|
|
response=get_results, include=get_request["include"]
|
||
|
|
)
|
||
|
|
|
||
|
|
def peek(self, limit: int = 10) -> GetResult:
|
||
|
|
"""Get the first few results in the database up to limit
|
||
|
|
|
||
|
|
Args:
|
||
|
|
limit: The number of results to return.
|
||
|
|
|
||
|
|
Returns:
|
||
|
|
GetResult: A GetResult object containing the results.
|
||
|
|
"""
|
||
|
|
return self._transform_peek_response(
|
||
|
|
self._client._peek(
|
||
|
|
collection_id=self.id,
|
||
|
|
n=limit,
|
||
|
|
tenant=self.tenant,
|
||
|
|
database=self.database,
|
||
|
|
)
|
||
|
|
)
|
||
|
|
|
||
|
|
def query(
|
||
|
|
self,
|
||
|
|
query_embeddings: Optional[
|
||
|
|
Union[
|
||
|
|
OneOrMany[Embedding],
|
||
|
|
OneOrMany[PyEmbedding],
|
||
|
|
]
|
||
|
|
] = None,
|
||
|
|
query_texts: Optional[OneOrMany[Document]] = None,
|
||
|
|
query_images: Optional[OneOrMany[Image]] = None,
|
||
|
|
query_uris: Optional[OneOrMany[URI]] = None,
|
||
|
|
ids: Optional[OneOrMany[ID]] = None,
|
||
|
|
n_results: int = 10,
|
||
|
|
where: Optional[Where] = None,
|
||
|
|
where_document: Optional[WhereDocument] = None,
|
||
|
|
include: Include = [
|
||
|
|
"metadatas",
|
||
|
|
"documents",
|
||
|
|
"distances",
|
||
|
|
],
|
||
|
|
) -> QueryResult:
|
||
|
|
"""Get the n_results nearest neighbor embeddings for provided query_embeddings or query_texts.
|
||
|
|
|
||
|
|
Args:
|
||
|
|
query_embeddings: The embeddings to get the closes neighbors of. Optional.
|
||
|
|
query_texts: The document texts to get the closes neighbors of. Optional.
|
||
|
|
query_images: The images to get the closes neighbors of. Optional.
|
||
|
|
query_uris: The URIs to be used with data loader. Optional.
|
||
|
|
ids: A subset of ids to search within. Optional.
|
||
|
|
n_results: The number of neighbors to return for each query_embedding or query_texts. Optional.
|
||
|
|
where: A Where type dict used to filter results by. E.g. `{"$and": [{"color" : "red"}, {"price": {"$gte": 4.20}}]}`. Optional.
|
||
|
|
where_document: A WhereDocument type dict used to filter by the documents. E.g. `{"$contains": "hello"}`. Optional.
|
||
|
|
include: A list of what to include in the results. Can contain `"embeddings"`, `"metadatas"`, `"documents"`, `"distances"`. Ids are always included. Defaults to `["metadatas", "documents", "distances"]`. Optional.
|
||
|
|
|
||
|
|
Returns:
|
||
|
|
QueryResult: A QueryResult object containing the results.
|
||
|
|
|
||
|
|
Raises:
|
||
|
|
ValueError: If you don't provide either query_embeddings, query_texts, or query_images
|
||
|
|
ValueError: If you provide both query_embeddings and query_texts
|
||
|
|
ValueError: If you provide both query_embeddings and query_images
|
||
|
|
ValueError: If you provide both query_texts and query_images
|
||
|
|
|
||
|
|
"""
|
||
|
|
|
||
|
|
query_request = self._validate_and_prepare_query_request(
|
||
|
|
query_embeddings=query_embeddings,
|
||
|
|
query_texts=query_texts,
|
||
|
|
query_images=query_images,
|
||
|
|
query_uris=query_uris,
|
||
|
|
ids=ids,
|
||
|
|
n_results=n_results,
|
||
|
|
where=where,
|
||
|
|
where_document=where_document,
|
||
|
|
include=include,
|
||
|
|
)
|
||
|
|
|
||
|
|
query_results = self._client._query(
|
||
|
|
collection_id=self.id,
|
||
|
|
ids=query_request["ids"],
|
||
|
|
query_embeddings=query_request["embeddings"],
|
||
|
|
n_results=query_request["n_results"],
|
||
|
|
where=query_request["where"],
|
||
|
|
where_document=query_request["where_document"],
|
||
|
|
include=query_request["include"],
|
||
|
|
tenant=self.tenant,
|
||
|
|
database=self.database,
|
||
|
|
)
|
||
|
|
|
||
|
|
return self._transform_query_response(
|
||
|
|
response=query_results, include=query_request["include"]
|
||
|
|
)
|
||
|
|
|
||
|
|
def modify(
|
||
|
|
self,
|
||
|
|
name: Optional[str] = None,
|
||
|
|
metadata: Optional[CollectionMetadata] = None,
|
||
|
|
configuration: Optional[UpdateCollectionConfiguration] = None,
|
||
|
|
) -> None:
|
||
|
|
"""Modify the collection name or metadata
|
||
|
|
|
||
|
|
Args:
|
||
|
|
name: The updated name for the collection. Optional.
|
||
|
|
metadata: The updated metadata for the collection. Optional.
|
||
|
|
|
||
|
|
Returns:
|
||
|
|
None
|
||
|
|
"""
|
||
|
|
|
||
|
|
self._validate_modify_request(metadata)
|
||
|
|
|
||
|
|
# Note there is a race condition here where the metadata can be updated
|
||
|
|
# but another thread sees the cached local metadata.
|
||
|
|
# TODO: fixme
|
||
|
|
self._client._modify(
|
||
|
|
id=self.id,
|
||
|
|
new_name=name,
|
||
|
|
new_metadata=metadata,
|
||
|
|
new_configuration=configuration,
|
||
|
|
tenant=self.tenant,
|
||
|
|
database=self.database,
|
||
|
|
)
|
||
|
|
|
||
|
|
self._update_model_after_modify_success(name, metadata, configuration)
|
||
|
|
|
||
|
|
def fork(
|
||
|
|
self,
|
||
|
|
new_name: str,
|
||
|
|
) -> "Collection":
|
||
|
|
"""Fork the current collection under a new name. The returning collection should contain identical data to the current collection.
|
||
|
|
This is an experimental API that only works for Hosted Chroma for now.
|
||
|
|
|
||
|
|
Args:
|
||
|
|
new_name: The name of the new collection.
|
||
|
|
|
||
|
|
Returns:
|
||
|
|
Collection: A new collection with the specified name and containing identical data to the current collection.
|
||
|
|
"""
|
||
|
|
model = self._client._fork(
|
||
|
|
collection_id=self.id,
|
||
|
|
new_name=new_name,
|
||
|
|
tenant=self.tenant,
|
||
|
|
database=self.database,
|
||
|
|
)
|
||
|
|
return Collection(
|
||
|
|
client=self._client,
|
||
|
|
model=model,
|
||
|
|
embedding_function=self._embedding_function,
|
||
|
|
data_loader=self._data_loader,
|
||
|
|
)
|
||
|
|
|
||
|
|
def search(
|
||
|
|
self,
|
||
|
|
searches: OneOrMany[Search],
|
||
|
|
) -> SearchResult:
|
||
|
|
"""Perform hybrid search on the collection.
|
||
|
|
This is an experimental API that only works for Hosted Chroma for now.
|
||
|
|
|
||
|
|
Args:
|
||
|
|
searches: A single Search object or a list of Search objects, each containing:
|
||
|
|
- where: Where expression for filtering
|
||
|
|
- rank: Ranking expression for hybrid search (defaults to Val(0.0))
|
||
|
|
- limit: Limit configuration for pagination (defaults to no limit)
|
||
|
|
- select: Select configuration for keys to return (defaults to empty)
|
||
|
|
|
||
|
|
Returns:
|
||
|
|
SearchResult: Column-major format response with:
|
||
|
|
- ids: List of result IDs for each search payload
|
||
|
|
- documents: Optional documents for each payload
|
||
|
|
- embeddings: Optional embeddings for each payload
|
||
|
|
- metadatas: Optional metadata for each payload
|
||
|
|
- scores: Optional scores for each payload
|
||
|
|
- select: List of selected keys for each payload
|
||
|
|
|
||
|
|
Raises:
|
||
|
|
NotImplementedError: For local/segment API implementations
|
||
|
|
|
||
|
|
Examples:
|
||
|
|
# Using builder pattern with Key constants
|
||
|
|
from chromadb.execution.expression import (
|
||
|
|
Search, Key, K, Knn, Val
|
||
|
|
)
|
||
|
|
|
||
|
|
# Note: K is an alias for Key, so K.DOCUMENT == Key.DOCUMENT
|
||
|
|
search = (Search()
|
||
|
|
.where((K("category") == "science") & (K("score") > 0.5))
|
||
|
|
.rank(Knn(query=[0.1, 0.2, 0.3]) * 0.8 + Val(0.5) * 0.2)
|
||
|
|
.limit(10, offset=0)
|
||
|
|
.select(K.DOCUMENT, K.SCORE, "title"))
|
||
|
|
|
||
|
|
# Direct construction
|
||
|
|
from chromadb.execution.expression import (
|
||
|
|
Search, Eq, And, Gt, Knn, Limit, Select, Key
|
||
|
|
)
|
||
|
|
|
||
|
|
search = Search(
|
||
|
|
where=And([Eq("category", "science"), Gt("score", 0.5)]),
|
||
|
|
rank=Knn(query=[0.1, 0.2, 0.3]),
|
||
|
|
limit=Limit(offset=0, limit=10),
|
||
|
|
select=Select(keys={Key.DOCUMENT, Key.SCORE, "title"})
|
||
|
|
)
|
||
|
|
|
||
|
|
# Single search
|
||
|
|
result = collection.search(search)
|
||
|
|
|
||
|
|
# Multiple searches at once
|
||
|
|
searches = [
|
||
|
|
Search().where(K("type") == "article").rank(Knn(query=[0.1, 0.2])),
|
||
|
|
Search().where(K("type") == "paper").rank(Knn(query=[0.3, 0.4]))
|
||
|
|
]
|
||
|
|
results = collection.search(searches)
|
||
|
|
"""
|
||
|
|
# Convert single search to list for consistent handling
|
||
|
|
searches_list = maybe_cast_one_to_many(searches)
|
||
|
|
if searches_list is None:
|
||
|
|
searches_list = []
|
||
|
|
|
||
|
|
# Embed any string queries in Knn objects
|
||
|
|
embedded_searches = [
|
||
|
|
self._embed_search_string_queries(search) for search in searches_list
|
||
|
|
]
|
||
|
|
|
||
|
|
return self._client._search(
|
||
|
|
collection_id=self.id,
|
||
|
|
searches=cast(List[Search], embedded_searches),
|
||
|
|
tenant=self.tenant,
|
||
|
|
database=self.database,
|
||
|
|
)
|
||
|
|
|
||
|
|
def update(
|
||
|
|
self,
|
||
|
|
ids: OneOrMany[ID],
|
||
|
|
embeddings: Optional[
|
||
|
|
Union[
|
||
|
|
OneOrMany[Embedding],
|
||
|
|
OneOrMany[PyEmbedding],
|
||
|
|
]
|
||
|
|
] = None,
|
||
|
|
metadatas: Optional[OneOrMany[Metadata]] = None,
|
||
|
|
documents: Optional[OneOrMany[Document]] = None,
|
||
|
|
images: Optional[OneOrMany[Image]] = None,
|
||
|
|
uris: Optional[OneOrMany[URI]] = None,
|
||
|
|
) -> None:
|
||
|
|
"""Update the embeddings, metadatas or documents for provided ids.
|
||
|
|
|
||
|
|
Args:
|
||
|
|
ids: The ids of the embeddings to update
|
||
|
|
embeddings: The embeddings to update. If None, embeddings will be computed based on the documents or images using the embedding_function set for the Collection. Optional.
|
||
|
|
metadatas: The metadata to associate with the embeddings. When querying, you can filter on this metadata. Optional.
|
||
|
|
documents: The documents to associate with the embeddings. Optional.
|
||
|
|
images: The images to associate with the embeddings. Optional.
|
||
|
|
Returns:
|
||
|
|
None
|
||
|
|
"""
|
||
|
|
update_request = self._validate_and_prepare_update_request(
|
||
|
|
ids=ids,
|
||
|
|
embeddings=embeddings,
|
||
|
|
metadatas=metadatas,
|
||
|
|
documents=documents,
|
||
|
|
images=images,
|
||
|
|
uris=uris,
|
||
|
|
)
|
||
|
|
|
||
|
|
self._client._update(
|
||
|
|
collection_id=self.id,
|
||
|
|
ids=update_request["ids"],
|
||
|
|
embeddings=update_request["embeddings"],
|
||
|
|
metadatas=update_request["metadatas"],
|
||
|
|
documents=update_request["documents"],
|
||
|
|
uris=update_request["uris"],
|
||
|
|
tenant=self.tenant,
|
||
|
|
database=self.database,
|
||
|
|
)
|
||
|
|
|
||
|
|
def upsert(
|
||
|
|
self,
|
||
|
|
ids: OneOrMany[ID],
|
||
|
|
embeddings: Optional[
|
||
|
|
Union[
|
||
|
|
OneOrMany[Embedding],
|
||
|
|
OneOrMany[PyEmbedding],
|
||
|
|
]
|
||
|
|
] = None,
|
||
|
|
metadatas: Optional[OneOrMany[Metadata]] = None,
|
||
|
|
documents: Optional[OneOrMany[Document]] = None,
|
||
|
|
images: Optional[OneOrMany[Image]] = None,
|
||
|
|
uris: Optional[OneOrMany[URI]] = None,
|
||
|
|
) -> None:
|
||
|
|
"""Update the embeddings, metadatas or documents for provided ids, or create them if they don't exist.
|
||
|
|
|
||
|
|
Args:
|
||
|
|
ids: The ids of the embeddings to update
|
||
|
|
embeddings: The embeddings to add. If None, embeddings will be computed based on the documents using the embedding_function set for the Collection. Optional.
|
||
|
|
metadatas: The metadata to associate with the embeddings. When querying, you can filter on this metadata. Optional.
|
||
|
|
documents: The documents to associate with the embeddings. Optional.
|
||
|
|
|
||
|
|
Returns:
|
||
|
|
None
|
||
|
|
"""
|
||
|
|
upsert_request = self._validate_and_prepare_upsert_request(
|
||
|
|
ids=ids,
|
||
|
|
embeddings=embeddings,
|
||
|
|
metadatas=metadatas,
|
||
|
|
documents=documents,
|
||
|
|
images=images,
|
||
|
|
uris=uris,
|
||
|
|
)
|
||
|
|
|
||
|
|
self._client._upsert(
|
||
|
|
collection_id=self.id,
|
||
|
|
ids=upsert_request["ids"],
|
||
|
|
embeddings=upsert_request["embeddings"],
|
||
|
|
metadatas=upsert_request["metadatas"],
|
||
|
|
documents=upsert_request["documents"],
|
||
|
|
uris=upsert_request["uris"],
|
||
|
|
tenant=self.tenant,
|
||
|
|
database=self.database,
|
||
|
|
)
|
||
|
|
|
||
|
|
def delete(
|
||
|
|
self,
|
||
|
|
ids: Optional[IDs] = None,
|
||
|
|
where: Optional[Where] = None,
|
||
|
|
where_document: Optional[WhereDocument] = None,
|
||
|
|
) -> None:
|
||
|
|
"""Delete the embeddings based on ids and/or a where filter
|
||
|
|
|
||
|
|
Args:
|
||
|
|
ids: The ids of the embeddings to delete
|
||
|
|
where: A Where type dict used to filter the delection by. E.g. `{"$and": [{"color" : "red"}, {"price": {"$gte": 4.20}]}}`. Optional.
|
||
|
|
where_document: A WhereDocument type dict used to filter the deletion by the document content. E.g. `{"$contains": "hello"}`. Optional.
|
||
|
|
|
||
|
|
Returns:
|
||
|
|
None
|
||
|
|
|
||
|
|
Raises:
|
||
|
|
ValueError: If you don't provide either ids, where, or where_document
|
||
|
|
"""
|
||
|
|
delete_request = self._validate_and_prepare_delete_request(
|
||
|
|
ids, where, where_document
|
||
|
|
)
|
||
|
|
|
||
|
|
self._client._delete(
|
||
|
|
collection_id=self.id,
|
||
|
|
ids=delete_request["ids"],
|
||
|
|
where=delete_request["where"],
|
||
|
|
where_document=delete_request["where_document"],
|
||
|
|
tenant=self.tenant,
|
||
|
|
database=self.database,
|
||
|
|
)
|
||
|
|
|
||
|
|
def attach_function(
|
||
|
|
self,
|
||
|
|
function: Function,
|
||
|
|
name: str,
|
||
|
|
output_collection: str,
|
||
|
|
params: Optional[Dict[str, Any]] = None,
|
||
|
|
) -> Tuple["AttachedFunction", bool]:
|
||
|
|
"""Attach a function to this collection.
|
||
|
|
|
||
|
|
Args:
|
||
|
|
function: A Function enum value (e.g., STATISTICS_FUNCTION, RECORD_COUNTER_FUNCTION)
|
||
|
|
name: Unique name for this attached function
|
||
|
|
output_collection: Name of the collection where function output will be stored
|
||
|
|
params: Optional dictionary with function-specific parameters
|
||
|
|
|
||
|
|
Returns:
|
||
|
|
Tuple of (AttachedFunction, created) where created is True if newly created,
|
||
|
|
False if already existed (idempotent request)
|
||
|
|
|
||
|
|
Example:
|
||
|
|
>>> from chromadb.api.functions import STATISTICS_FUNCTION
|
||
|
|
>>> attached_fn = collection.attach_function(
|
||
|
|
... function=STATISTICS_FUNCTION,
|
||
|
|
... name="mycoll_stats_fn",
|
||
|
|
... output_collection="mycoll_stats",
|
||
|
|
... )
|
||
|
|
>>> if created:
|
||
|
|
... print("New function attached")
|
||
|
|
... else:
|
||
|
|
... print("Function already existed")
|
||
|
|
"""
|
||
|
|
function_id = function.value if isinstance(function, Function) else function
|
||
|
|
return self._client.attach_function(
|
||
|
|
function_id=function_id,
|
||
|
|
name=name,
|
||
|
|
input_collection_id=self.id,
|
||
|
|
output_collection=output_collection,
|
||
|
|
params=params,
|
||
|
|
tenant=self.tenant,
|
||
|
|
database=self.database,
|
||
|
|
)
|
||
|
|
|
||
|
|
def get_attached_function(self, name: str) -> "AttachedFunction":
|
||
|
|
"""Get an attached function by name for this collection.
|
||
|
|
|
||
|
|
Args:
|
||
|
|
name: Name of the attached function
|
||
|
|
|
||
|
|
Returns:
|
||
|
|
AttachedFunction: The attached function object
|
||
|
|
|
||
|
|
Raises:
|
||
|
|
NotFoundError: If the attached function doesn't exist
|
||
|
|
"""
|
||
|
|
return self._client.get_attached_function(
|
||
|
|
name=name,
|
||
|
|
input_collection_id=self.id,
|
||
|
|
tenant=self.tenant,
|
||
|
|
database=self.database,
|
||
|
|
)
|
||
|
|
|
||
|
|
def detach_function(
|
||
|
|
self,
|
||
|
|
name: str,
|
||
|
|
delete_output_collection: bool = False,
|
||
|
|
) -> bool:
|
||
|
|
"""Detach a function from this collection.
|
||
|
|
|
||
|
|
Args:
|
||
|
|
name: The name of the attached function
|
||
|
|
delete_output_collection: Whether to also delete the output collection. Defaults to False.
|
||
|
|
|
||
|
|
Returns:
|
||
|
|
bool: True if successful
|
||
|
|
|
||
|
|
Example:
|
||
|
|
>>> success = collection.detach_function("my_function", delete_output_collection=True)
|
||
|
|
"""
|
||
|
|
return self._client.detach_function(
|
||
|
|
name=name,
|
||
|
|
input_collection_id=self.id,
|
||
|
|
delete_output=delete_output_collection,
|
||
|
|
tenant=self.tenant,
|
||
|
|
database=self.database,
|
||
|
|
)
|