group-wbl/.venv/lib/python3.13/site-packages/sklearn/decomposition/__init__.py

51 lines
1.5 KiB
Python
Raw Normal View History

2026-01-09 09:48:03 +08:00
"""Matrix decomposition algorithms.
These include PCA, NMF, ICA, and more. Most of the algorithms of this module can be
regarded as dimensionality reduction techniques.
"""
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
from sklearn.decomposition._dict_learning import (
DictionaryLearning,
MiniBatchDictionaryLearning,
SparseCoder,
dict_learning,
dict_learning_online,
sparse_encode,
)
from sklearn.decomposition._factor_analysis import FactorAnalysis
from sklearn.decomposition._fastica import FastICA, fastica
from sklearn.decomposition._incremental_pca import IncrementalPCA
from sklearn.decomposition._kernel_pca import KernelPCA
from sklearn.decomposition._lda import LatentDirichletAllocation
from sklearn.decomposition._nmf import NMF, MiniBatchNMF, non_negative_factorization
from sklearn.decomposition._pca import PCA
from sklearn.decomposition._sparse_pca import MiniBatchSparsePCA, SparsePCA
from sklearn.decomposition._truncated_svd import TruncatedSVD
from sklearn.utils.extmath import randomized_svd
__all__ = [
"NMF",
"PCA",
"DictionaryLearning",
"FactorAnalysis",
"FastICA",
"IncrementalPCA",
"KernelPCA",
"LatentDirichletAllocation",
"MiniBatchDictionaryLearning",
"MiniBatchNMF",
"MiniBatchSparsePCA",
"SparseCoder",
"SparsePCA",
"TruncatedSVD",
"dict_learning",
"dict_learning_online",
"fastica",
"non_negative_factorization",
"randomized_svd",
"sparse_encode",
]