"""This module provides a ValidationNode class that can be used to validate tool calls in a langchain graph. It applies a pydantic schema to tool_calls in the models' outputs, and returns a ToolMessage with the validated content. If the schema is not valid, it returns a ToolMessage with the error message. The ValidationNode can be used in a StateGraph with a "messages" key. If multiple tool calls are requested, they will be run in parallel. """ from collections.abc import Callable, Sequence from typing import ( Any, cast, ) from langchain_core.messages import ( AIMessage, AnyMessage, ToolCall, ToolMessage, ) from langchain_core.runnables import ( RunnableConfig, ) from langchain_core.runnables.config import get_executor_for_config from langchain_core.tools import BaseTool, create_schema_from_function from langchain_core.utils.pydantic import is_basemodel_subclass from langgraph._internal._runnable import RunnableCallable from langgraph.warnings import LangGraphDeprecatedSinceV10 from pydantic import BaseModel, ValidationError from pydantic.v1 import BaseModel as BaseModelV1 from pydantic.v1 import ValidationError as ValidationErrorV1 from typing_extensions import deprecated def _default_format_error( error: BaseException, call: ToolCall, schema: type[BaseModel] | type[BaseModelV1], ) -> str: """Default error formatting function.""" return f"{repr(error)}\n\nRespond after fixing all validation errors." @deprecated( "ValidationNode is deprecated. Please use `create_agent` from `langchain.agents` with custom tool error handling.", category=LangGraphDeprecatedSinceV10, ) class ValidationNode(RunnableCallable): """A node that validates all tools requests from the last `AIMessage`. It can be used either in `StateGraph` with a `'messages'` key. !!! note This node does not actually **run** the tools, it only validates the tool calls, which is useful for extraction and other use cases where you need to generate structured output that conforms to a complex schema without losing the original messages and tool IDs (for use in multi-turn conversations). Returns: (Union[Dict[str, List[ToolMessage]], Sequence[ToolMessage]]): A list of `ToolMessage` objects with the validated content or error messages. Example: ```python title="Example usage for re-prompting the model to generate a valid response:" from typing import Literal, Annotated from typing_extensions import TypedDict from langchain_anthropic import ChatAnthropic from pydantic import BaseModel, field_validator from langgraph.graph import END, START, StateGraph from langgraph.prebuilt import ValidationNode from langgraph.graph.message import add_messages class SelectNumber(BaseModel): a: int @field_validator("a") def a_must_be_meaningful(cls, v): if v != 37: raise ValueError("Only 37 is allowed") return v builder = StateGraph(Annotated[list, add_messages]) llm = ChatAnthropic(model="claude-3-5-haiku-latest").bind_tools([SelectNumber]) builder.add_node("model", llm) builder.add_node("validation", ValidationNode([SelectNumber])) builder.add_edge(START, "model") def should_validate(state: list) -> Literal["validation", "__end__"]: if state[-1].tool_calls: return "validation" return END builder.add_conditional_edges("model", should_validate) def should_reprompt(state: list) -> Literal["model", "__end__"]: for msg in state[::-1]: # None of the tool calls were errors if msg.type == "ai": return END if msg.additional_kwargs.get("is_error"): return "model" return END builder.add_conditional_edges("validation", should_reprompt) graph = builder.compile() res = graph.invoke(("user", "Select a number, any number")) # Show the retry logic for msg in res: msg.pretty_print() ``` """ def __init__( self, schemas: Sequence[BaseTool | type[BaseModel] | Callable], *, format_error: Callable[[BaseException, ToolCall, type[BaseModel]], str] | None = None, name: str = "validation", tags: list[str] | None = None, ) -> None: """Initialize the ValidationNode. Args: schemas: A list of schemas to validate the tool calls with. These can be any of the following: - A pydantic BaseModel class - A BaseTool instance (the args_schema will be used) - A function (a schema will be created from the function signature) format_error: A function that takes an exception, a ToolCall, and a schema and returns a formatted error string. By default, it returns the exception repr and a message to respond after fixing validation errors. name: The name of the node. tags: A list of tags to add to the node. """ super().__init__(self._func, None, name=name, tags=tags, trace=False) self._format_error = format_error or _default_format_error self.schemas_by_name: dict[str, type[BaseModel]] = {} for schema in schemas: if isinstance(schema, BaseTool): if schema.args_schema is None: raise ValueError( f"Tool {schema.name} does not have an args_schema defined." ) elif not isinstance( schema.args_schema, type ) or not is_basemodel_subclass(schema.args_schema): raise ValueError( "Validation node only works with tools that have a pydantic BaseModel args_schema. " f"Got {schema.name} with args_schema: {schema.args_schema}." ) self.schemas_by_name[schema.name] = schema.args_schema elif isinstance(schema, type) and issubclass( schema, (BaseModel, BaseModelV1) ): self.schemas_by_name[schema.__name__] = cast(type[BaseModel], schema) elif callable(schema): base_model = create_schema_from_function("Validation", schema) self.schemas_by_name[schema.__name__] = base_model else: raise ValueError( f"Unsupported input to ValidationNode. Expected BaseModel, tool or function. Got: {type(schema)}." ) def _get_message( self, input: list[AnyMessage] | dict[str, Any] ) -> tuple[str, AIMessage]: """Extract the last AIMessage from the input.""" if isinstance(input, list): output_type = "list" messages: list = input elif messages := input.get("messages", []): output_type = "dict" else: raise ValueError("No message found in input") message: AnyMessage = messages[-1] if not isinstance(message, AIMessage): raise ValueError("Last message is not an AIMessage") return output_type, message def _func( self, input: list[AnyMessage] | dict[str, Any], config: RunnableConfig ) -> Any: """Validate and run tool calls synchronously.""" output_type, message = self._get_message(input) def run_one(call: ToolCall) -> ToolMessage: schema = self.schemas_by_name[call["name"]] try: if issubclass(schema, BaseModel): output = schema.model_validate(call["args"]) content = output.model_dump_json() elif issubclass(schema, BaseModelV1): output = schema.validate(call["args"]) content = output.json() else: raise ValueError( f"Unsupported schema type: {type(schema)}. Expected BaseModel or BaseModelV1." ) return ToolMessage( content=content, name=call["name"], tool_call_id=cast(str, call["id"]), ) except (ValidationError, ValidationErrorV1) as e: return ToolMessage( content=self._format_error(e, call, schema), name=call["name"], tool_call_id=cast(str, call["id"]), additional_kwargs={"is_error": True}, ) with get_executor_for_config(config) as executor: outputs = [*executor.map(run_one, message.tool_calls)] if output_type == "list": return outputs else: return {"messages": outputs}