""" Multi-dimensional Scaling (MDS). """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import warnings from numbers import Integral, Real import numpy as np from joblib import effective_n_jobs from sklearn.base import BaseEstimator, _fit_context from sklearn.isotonic import IsotonicRegression from sklearn.manifold import ClassicalMDS from sklearn.metrics import euclidean_distances, pairwise_distances from sklearn.utils import check_array, check_random_state, check_symmetric from sklearn.utils._param_validation import ( Hidden, Interval, StrOptions, validate_params, ) from sklearn.utils.parallel import Parallel, delayed from sklearn.utils.validation import validate_data def _smacof_single( dissimilarities, metric=True, n_components=2, init=None, max_iter=300, verbose=0, eps=1e-6, random_state=None, normalized_stress=False, ): """Computes multidimensional scaling using SMACOF algorithm. Parameters ---------- dissimilarities : ndarray of shape (n_samples, n_samples) Pairwise dissimilarities between the points. Must be symmetric. metric : bool, default=True Compute metric or nonmetric SMACOF algorithm. When ``False`` (i.e. non-metric MDS), dissimilarities with 0 are considered as missing values. n_components : int, default=2 Number of dimensions in which to immerse the dissimilarities. If an ``init`` array is provided, this option is overridden and the shape of ``init`` is used to determine the dimensionality of the embedding space. init : ndarray of shape (n_samples, n_components), default=None Starting configuration of the embedding to initialize the algorithm. By default, the algorithm is initialized with a randomly chosen array. max_iter : int, default=300 Maximum number of iterations of the SMACOF algorithm for a single run. verbose : int, default=0 Level of verbosity. eps : float, default=1e-6 The tolerance with respect to stress (normalized by the sum of squared embedding distances) at which to declare convergence. .. versionchanged:: 1.7 The default value for `eps` has changed from 1e-3 to 1e-6, as a result of a bugfix in the computation of the convergence criterion. random_state : int, RandomState instance or None, default=None Determines the random number generator used to initialize the centers. Pass an int for reproducible results across multiple function calls. See :term:`Glossary `. normalized_stress : bool, default=False Whether to return normalized stress value (Stress-1) instead of raw stress. .. versionadded:: 1.2 .. versionchanged:: 1.7 Normalized stress is now supported for metric MDS as well. Returns ------- X : ndarray of shape (n_samples, n_components) Coordinates of the points in a ``n_components``-space. stress : float The final value of the stress (sum of squared distance of the disparities and the distances for all constrained points). If `normalized_stress=True`, returns Stress-1. A value of 0 indicates "perfect" fit, 0.025 excellent, 0.05 good, 0.1 fair, and 0.2 poor [1]_. n_iter : int The number of iterations corresponding to the best stress. References ---------- .. [1] "Nonmetric multidimensional scaling: a numerical method" Kruskal, J. Psychometrika, 29 (1964) .. [2] "Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis" Kruskal, J. Psychometrika, 29, (1964) .. [3] "Modern Multidimensional Scaling - Theory and Applications" Borg, I.; Groenen P. Springer Series in Statistics (1997) """ dissimilarities = check_symmetric(dissimilarities, raise_exception=True) n_samples = dissimilarities.shape[0] random_state = check_random_state(random_state) dissimilarities_flat = ((1 - np.tri(n_samples)) * dissimilarities).ravel() dissimilarities_flat_w = dissimilarities_flat[dissimilarities_flat != 0] if init is None: # Randomly choose initial configuration X = random_state.uniform(size=n_samples * n_components) X = X.reshape((n_samples, n_components)) else: # overrides the parameter p n_components = init.shape[1] if n_samples != init.shape[0]: raise ValueError( "init matrix should be of shape (%d, %d)" % (n_samples, n_components) ) X = init distances = euclidean_distances(X) # Out of bounds condition cannot happen because we are transforming # the training set here, but does sometimes get triggered in # practice due to machine precision issues. Hence "clip". ir = IsotonicRegression(out_of_bounds="clip") old_stress = None for it in range(max_iter): # Compute distance and monotonic regression if metric: disparities = dissimilarities else: distances_flat = distances.ravel() # dissimilarities with 0 are considered as missing values distances_flat_w = distances_flat[dissimilarities_flat != 0] # Compute the disparities using isotonic regression. # For the first SMACOF iteration, use scaled original dissimilarities. # (This choice follows the R implementation described in this paper: # https://www.jstatsoft.org/article/view/v102i10) if it < 1: disparities_flat = dissimilarities_flat_w else: disparities_flat = ir.fit_transform( dissimilarities_flat_w, distances_flat_w ) disparities = np.zeros_like(distances_flat) disparities[dissimilarities_flat != 0] = disparities_flat disparities = disparities.reshape((n_samples, n_samples)) disparities *= np.sqrt( (n_samples * (n_samples - 1) / 2) / (disparities**2).sum() ) disparities = disparities + disparities.T # Update X using the Guttman transform distances[distances == 0] = 1e-5 ratio = disparities / distances B = -ratio B[np.arange(len(B)), np.arange(len(B))] += ratio.sum(axis=1) X = 1.0 / n_samples * np.dot(B, X) # Compute stress distances = euclidean_distances(X) stress = ((distances.ravel() - disparities.ravel()) ** 2).sum() / 2 if verbose >= 2: # pragma: no cover print(f"Iteration {it}, stress {stress:.4f}") if old_stress is not None: sum_squared_distances = (distances.ravel() ** 2).sum() if ((old_stress - stress) / (sum_squared_distances / 2)) < eps: if verbose: # pragma: no cover print(f"Convergence criterion reached (iteration {it}).") break old_stress = stress if normalized_stress: sum_squared_distances = (distances.ravel() ** 2).sum() stress = np.sqrt(stress / (sum_squared_distances / 2)) return X, stress, it + 1 # TODO(1.9): change default `n_init` to 1, see PR #31117 @validate_params( { "dissimilarities": ["array-like"], "metric": ["boolean"], "n_components": [Interval(Integral, 1, None, closed="left")], "init": ["array-like", None], "n_init": [Interval(Integral, 1, None, closed="left"), StrOptions({"warn"})], "n_jobs": [Integral, None], "max_iter": [Interval(Integral, 1, None, closed="left")], "verbose": ["verbose"], "eps": [Interval(Real, 0, None, closed="left")], "random_state": ["random_state"], "return_n_iter": ["boolean"], "normalized_stress": ["boolean", StrOptions({"auto"})], }, prefer_skip_nested_validation=True, ) def smacof( dissimilarities, *, metric=True, n_components=2, init=None, n_init="warn", n_jobs=None, max_iter=300, verbose=0, eps=1e-6, random_state=None, return_n_iter=False, normalized_stress="auto", ): """Compute multidimensional scaling using the SMACOF algorithm. The SMACOF (Scaling by MAjorizing a COmplicated Function) algorithm is a multidimensional scaling algorithm which minimizes an objective function (the *stress*) using a majorization technique. Stress majorization, also known as the Guttman Transform, guarantees a monotone convergence of stress, and is more powerful than traditional techniques such as gradient descent. The SMACOF algorithm for metric MDS can be summarized by the following steps: 1. Set an initial start configuration, randomly or not. 2. Compute the stress 3. Compute the Guttman Transform 4. Iterate 2 and 3 until convergence. The nonmetric algorithm adds a monotonic regression step before computing the stress. Parameters ---------- dissimilarities : array-like of shape (n_samples, n_samples) Pairwise dissimilarities between the points. Must be symmetric. metric : bool, default=True Compute metric or nonmetric SMACOF algorithm. When ``False`` (i.e. non-metric MDS), dissimilarities with 0 are considered as missing values. n_components : int, default=2 Number of dimensions in which to immerse the dissimilarities. If an ``init`` array is provided, this option is overridden and the shape of ``init`` is used to determine the dimensionality of the embedding space. init : array-like of shape (n_samples, n_components), default=None Starting configuration of the embedding to initialize the algorithm. By default, the algorithm is initialized with a randomly chosen array. n_init : int, default=8 Number of times the SMACOF algorithm will be run with different initializations. The final results will be the best output of the runs, determined by the run with the smallest final stress. If ``init`` is provided, this option is overridden and a single run is performed. .. versionchanged:: 1.9 The default value for `n_iter` will change from 8 to 1 in version 1.9. n_jobs : int, default=None The number of jobs to use for the computation. If multiple initializations are used (``n_init``), each run of the algorithm is computed in parallel. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary ` for more details. max_iter : int, default=300 Maximum number of iterations of the SMACOF algorithm for a single run. verbose : int, default=0 Level of verbosity. eps : float, default=1e-6 The tolerance with respect to stress (normalized by the sum of squared embedding distances) at which to declare convergence. .. versionchanged:: 1.7 The default value for `eps` has changed from 1e-3 to 1e-6, as a result of a bugfix in the computation of the convergence criterion. random_state : int, RandomState instance or None, default=None Determines the random number generator used to initialize the centers. Pass an int for reproducible results across multiple function calls. See :term:`Glossary `. return_n_iter : bool, default=False Whether or not to return the number of iterations. normalized_stress : bool or "auto", default="auto" Whether to return normalized stress value (Stress-1) instead of raw stress. By default, metric MDS returns raw stress while non-metric MDS returns normalized stress. .. versionadded:: 1.2 .. versionchanged:: 1.4 The default value changed from `False` to `"auto"` in version 1.4. .. versionchanged:: 1.7 Normalized stress is now supported for metric MDS as well. Returns ------- X : ndarray of shape (n_samples, n_components) Coordinates of the points in a ``n_components``-space. stress : float The final value of the stress (sum of squared distance of the disparities and the distances for all constrained points). If `normalized_stress=True`, returns Stress-1. A value of 0 indicates "perfect" fit, 0.025 excellent, 0.05 good, 0.1 fair, and 0.2 poor [1]_. n_iter : int The number of iterations corresponding to the best stress. Returned only if ``return_n_iter`` is set to ``True``. References ---------- .. [1] "Nonmetric multidimensional scaling: a numerical method" Kruskal, J. Psychometrika, 29 (1964) .. [2] "Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis" Kruskal, J. Psychometrika, 29, (1964) .. [3] "Modern Multidimensional Scaling - Theory and Applications" Borg, I.; Groenen P. Springer Series in Statistics (1997) Examples -------- >>> import numpy as np >>> from sklearn.manifold import smacof >>> from sklearn.metrics import euclidean_distances >>> X = np.array([[0, 1, 2], [1, 0, 3], [2, 3, 0]]) >>> dissimilarities = euclidean_distances(X) >>> Z, stress = smacof( ... dissimilarities, n_components=2, n_init=1, eps=1e-6, random_state=42 ... ) >>> Z.shape (3, 2) >>> np.round(stress, 6).item() 3.2e-05 """ if n_init == "warn": warnings.warn( "The default value of `n_init` will change from 8 to 1 in 1.9.", FutureWarning, ) n_init = 8 dissimilarities = check_array(dissimilarities) random_state = check_random_state(random_state) if normalized_stress == "auto": normalized_stress = not metric if hasattr(init, "__array__"): init = np.asarray(init).copy() if not n_init == 1: warnings.warn( "Explicit initial positions passed: " "performing only one init of the MDS instead of %d" % n_init ) n_init = 1 best_pos, best_stress = None, None if effective_n_jobs(n_jobs) == 1: for it in range(n_init): pos, stress, n_iter_ = _smacof_single( dissimilarities, metric=metric, n_components=n_components, init=init, max_iter=max_iter, verbose=verbose, eps=eps, random_state=random_state, normalized_stress=normalized_stress, ) if best_stress is None or stress < best_stress: best_stress = stress best_pos = pos.copy() best_iter = n_iter_ else: seeds = random_state.randint(np.iinfo(np.int32).max, size=n_init) results = Parallel(n_jobs=n_jobs, verbose=max(verbose - 1, 0))( delayed(_smacof_single)( dissimilarities, metric=metric, n_components=n_components, init=init, max_iter=max_iter, verbose=verbose, eps=eps, random_state=seed, normalized_stress=normalized_stress, ) for seed in seeds ) positions, stress, n_iters = zip(*results) best = np.argmin(stress) best_stress = stress[best] best_pos = positions[best] best_iter = n_iters[best] if return_n_iter: return best_pos, best_stress, best_iter else: return best_pos, best_stress # TODO(1.9): change default `n_init` to 1, see PR #31117 # TODO(1.10): change default `init` to "classical_mds", see PR #32229 # TODO(1.10): drop support for boolean `metric`, see PR #32229 # TODO(1.10): drop support for `dissimilarity`, see PR #32229 class MDS(BaseEstimator): """Multidimensional scaling. Read more in the :ref:`User Guide `. Parameters ---------- n_components : int, default=2 Number of dimensions in which to immerse the dissimilarities. metric_mds : bool, default=True If ``True``, perform metric MDS; otherwise, perform nonmetric MDS. When ``False`` (i.e. non-metric MDS), dissimilarities with 0 are considered as missing values. .. versionchanged:: 1.8 The parameter `metric` was renamed into `metric_mds`. n_init : int, default=4 Number of times the SMACOF algorithm will be run with different initializations. The final results will be the best output of the runs, determined by the run with the smallest final stress. .. versionchanged:: 1.9 The default value for `n_init` will change from 4 to 1 in version 1.9. init : {'random', 'classical_mds'}, default='random' The initialization approach. If `random`, random initialization is used. If `classical_mds`, then classical MDS is run and used as initialization for MDS (in this case, the value of `n_init` is ignored). .. versionadded:: 1.8 .. versionchanged:: 1.10 The default value for `init` will change to `classical_mds`. max_iter : int, default=300 Maximum number of iterations of the SMACOF algorithm for a single run. verbose : int, default=0 Level of verbosity. eps : float, default=1e-6 The tolerance with respect to stress (normalized by the sum of squared embedding distances) at which to declare convergence. .. versionchanged:: 1.7 The default value for `eps` has changed from 1e-3 to 1e-6, as a result of a bugfix in the computation of the convergence criterion. n_jobs : int, default=None The number of jobs to use for the computation. If multiple initializations are used (``n_init``), each run of the algorithm is computed in parallel. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary ` for more details. random_state : int, RandomState instance or None, default=None Determines the random number generator used to initialize the centers. Pass an int for reproducible results across multiple function calls. See :term:`Glossary `. dissimilarity : {'euclidean', 'precomputed'} Dissimilarity measure to use: - 'euclidean': Pairwise Euclidean distances between points in the dataset. - 'precomputed': Pre-computed dissimilarities are passed directly to ``fit`` and ``fit_transform``. .. deprecated:: 1.8 `dissimilarity` was renamed `metric` in 1.8 and will be removed in 1.10. metric : str or callable, default='euclidean' Metric to use for dissimilarity computation. Default is "euclidean". If metric is a string, it must be one of the options allowed by `scipy.spatial.distance.pdist` for its metric parameter, or a metric listed in :func:`sklearn.metrics.pairwise.distance_metrics` If metric is "precomputed", X is assumed to be a distance matrix and must be square during fit. If metric is a callable function, it takes two arrays representing 1D vectors as inputs and must return one value indicating the distance between those vectors. This works for Scipy's metrics, but is less efficient than passing the metric name as a string. .. versionchanged:: 1.8 Prior to 1.8, `metric=True/False` was used to select metric/non-metric MDS, which is now the role of `metric_mds`. The support for ``True`` and ``False`` will be dropped in version 1.10, use `metric_mds` instead. metric_params : dict, default=None Additional keyword arguments for the dissimilarity computation. .. versionadded:: 1.8 normalized_stress : bool or "auto" default="auto" Whether to return normalized stress value (Stress-1) instead of raw stress. By default, metric MDS returns raw stress while non-metric MDS returns normalized stress. .. versionadded:: 1.2 .. versionchanged:: 1.4 The default value changed from `False` to `"auto"` in version 1.4. .. versionchanged:: 1.7 Normalized stress is now supported for metric MDS as well. Attributes ---------- embedding_ : ndarray of shape (n_samples, n_components) Stores the position of the dataset in the embedding space. stress_ : float The final value of the stress (sum of squared distance of the disparities and the distances for all constrained points). If `normalized_stress=True`, returns Stress-1. A value of 0 indicates "perfect" fit, 0.025 excellent, 0.05 good, 0.1 fair, and 0.2 poor [1]_. dissimilarity_matrix_ : ndarray of shape (n_samples, n_samples) Pairwise dissimilarities between the points. Symmetric matrix that: - either uses a custom dissimilarity matrix by setting `dissimilarity` to 'precomputed'; - or constructs a dissimilarity matrix from data using Euclidean distances. n_features_in_ : int Number of features seen during :term:`fit`. .. versionadded:: 0.24 feature_names_in_ : ndarray of shape (`n_features_in_`,) Names of features seen during :term:`fit`. Defined only when `X` has feature names that are all strings. .. versionadded:: 1.0 n_iter_ : int The number of iterations corresponding to the best stress. See Also -------- sklearn.decomposition.PCA : Principal component analysis that is a linear dimensionality reduction method. sklearn.decomposition.KernelPCA : Non-linear dimensionality reduction using kernels and PCA. TSNE : T-distributed Stochastic Neighbor Embedding. Isomap : Manifold learning based on Isometric Mapping. LocallyLinearEmbedding : Manifold learning using Locally Linear Embedding. SpectralEmbedding : Spectral embedding for non-linear dimensionality. References ---------- .. [1] "Nonmetric multidimensional scaling: a numerical method" Kruskal, J. Psychometrika, 29 (1964) .. [2] "Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis" Kruskal, J. Psychometrika, 29, (1964) .. [3] "Modern Multidimensional Scaling - Theory and Applications" Borg, I.; Groenen P. Springer Series in Statistics (1997) Examples -------- >>> from sklearn.datasets import load_digits >>> from sklearn.manifold import MDS >>> X, _ = load_digits(return_X_y=True) >>> X.shape (1797, 64) >>> embedding = MDS(n_components=2, n_init=1, init="random") >>> X_transformed = embedding.fit_transform(X[:100]) >>> X_transformed.shape (100, 2) For a more detailed example of usage, see :ref:`sphx_glr_auto_examples_manifold_plot_mds.py`. For a comparison of manifold learning techniques, see :ref:`sphx_glr_auto_examples_manifold_plot_compare_methods.py`. """ _parameter_constraints: dict = { "n_components": [Interval(Integral, 1, None, closed="left")], "metric_mds": ["boolean"], "n_init": [ Interval(Integral, 1, None, closed="left"), Hidden(StrOptions({"warn"})), ], "init": [StrOptions({"random", "classical_mds"}), Hidden(StrOptions({"warn"}))], "max_iter": [Interval(Integral, 1, None, closed="left")], "verbose": ["verbose"], "eps": [Interval(Real, 0.0, None, closed="left")], "n_jobs": [None, Integral], "random_state": ["random_state"], "dissimilarity": [ StrOptions({"euclidean", "precomputed"}), Hidden(StrOptions({"deprecated"})), ], "metric": [str, callable, Hidden("boolean")], "metric_params": [dict, None], "normalized_stress": ["boolean", StrOptions({"auto"})], } def __init__( self, n_components=2, *, metric_mds=True, n_init="warn", init="warn", max_iter=300, verbose=0, eps=1e-6, n_jobs=None, random_state=None, dissimilarity="deprecated", metric="euclidean", metric_params=None, normalized_stress="auto", ): self.n_components = n_components self.dissimilarity = dissimilarity self.metric = metric self.metric_params = metric_params self.metric_mds = metric_mds self.n_init = n_init self.init = init self.max_iter = max_iter self.eps = eps self.verbose = verbose self.n_jobs = n_jobs self.random_state = random_state self.normalized_stress = normalized_stress def __sklearn_tags__(self): tags = super().__sklearn_tags__() tags.input_tags.pairwise = (self.dissimilarity == "precomputed") | ( self.metric == "precomputed" ) return tags def fit(self, X, y=None, init=None): """ Compute the position of the points in the embedding space. Parameters ---------- X : array-like of shape (n_samples, n_features) or \ (n_samples, n_samples) Input data. If ``metric=='precomputed'``, the input should be the dissimilarity matrix. y : Ignored Not used, present for API consistency by convention. init : ndarray of shape (n_samples, n_components), default=None Starting configuration of the embedding to initialize the SMACOF algorithm. By default, the algorithm is initialized with a randomly chosen array. Returns ------- self : object Fitted estimator. """ self.fit_transform(X, init=init) return self @_fit_context(prefer_skip_nested_validation=True) def fit_transform(self, X, y=None, init=None): """ Fit the data from `X`, and returns the embedded coordinates. Parameters ---------- X : array-like of shape (n_samples, n_features) or \ (n_samples, n_samples) Input data. If ``metric=='precomputed'``, the input should be the dissimilarity matrix. y : Ignored Not used, present for API consistency by convention. init : ndarray of shape (n_samples, n_components), default=None Starting configuration of the embedding to initialize the SMACOF algorithm. By default, the algorithm is initialized with a randomly chosen array. Returns ------- X_new : ndarray of shape (n_samples, n_components) X transformed in the new space. """ if self.n_init == "warn": warnings.warn( "The default value of `n_init` will change from 4 to 1 in 1.9. " "To suppress this warning, provide some value of `n_init`.", FutureWarning, ) self._n_init = 4 else: self._n_init = self.n_init if self.init == "warn": warnings.warn( "The default value of `init` will change from 'random' to " "'classical_mds' in 1.10. To suppress this warning, provide " "some value of `init`.", FutureWarning, ) self._init = "random" else: self._init = self.init if self.dissimilarity != "deprecated": if not isinstance(self.metric, bool) and self.metric != "euclidean": raise ValueError( "You provided both `dissimilarity` and `metric`. Please use " "only `metric`." ) else: warnings.warn( "The `dissimilarity` parameter is deprecated and will be " "removed in 1.10. Use `metric` instead.", FutureWarning, ) self._metric = self.dissimilarity if isinstance(self.metric, bool): warnings.warn( f"Use metric_mds={self.metric} instead of metric={self.metric}. The " "support for metric={True/False} will be dropped in 1.10.", FutureWarning, ) if self.dissimilarity == "deprecated": self._metric = "euclidean" self._metric_mds = self.metric else: if self.dissimilarity == "deprecated": self._metric = self.metric self._metric_mds = self.metric_mds X = validate_data(self, X) if X.shape[0] == X.shape[1] and self._metric != "precomputed": warnings.warn( "The provided input is a square matrix. Note that ``fit`` constructs " "a dissimilarity matrix from data and will treat rows as samples " "and columns as features. To use a pre-computed dissimilarity matrix, " "set ``metric='precomputed'``." ) if self._metric == "precomputed": self.dissimilarity_matrix_ = X self.dissimilarity_matrix_ = check_symmetric( self.dissimilarity_matrix_, raise_exception=True ) else: self.dissimilarity_matrix_ = pairwise_distances( X, metric=self._metric, **(self.metric_params if self.metric_params is not None else {}), ) if init is not None: init_array = init elif self._init == "classical_mds": cmds = ClassicalMDS(metric="precomputed") init_array = cmds.fit_transform(self.dissimilarity_matrix_) else: init_array = None self.embedding_, self.stress_, self.n_iter_ = smacof( self.dissimilarity_matrix_, metric=self._metric_mds, n_components=self.n_components, init=init_array, n_init=self._n_init, n_jobs=self.n_jobs, max_iter=self.max_iter, verbose=self.verbose, eps=self.eps, random_state=self.random_state, return_n_iter=True, normalized_stress=self.normalized_stress, ) return self.embedding_