"""Chain that carries on a conversation and calls an LLM.""" from langchain_core._api import deprecated from langchain_core.prompts import BasePromptTemplate from pydantic import ConfigDict, Field, model_validator from typing_extensions import Self, override from langchain_classic.base_memory import BaseMemory from langchain_classic.chains.conversation.prompt import PROMPT from langchain_classic.chains.llm import LLMChain from langchain_classic.memory.buffer import ConversationBufferMemory @deprecated( since="0.2.7", alternative="langchain_core.runnables.history.RunnableWithMessageHistory", removal="1.0", ) class ConversationChain(LLMChain): """Chain to have a conversation and load context from memory. This class is deprecated in favor of `RunnableWithMessageHistory`. Please refer to this tutorial for more detail: https://python.langchain.com/docs/tutorials/chatbot/ `RunnableWithMessageHistory` offers several benefits, including: - Stream, batch, and async support; - More flexible memory handling, including the ability to manage memory outside the chain; - Support for multiple threads. Below is a minimal implementation, analogous to using `ConversationChain` with the default `ConversationBufferMemory`: ```python from langchain_core.chat_history import InMemoryChatMessageHistory from langchain_core.runnables.history import RunnableWithMessageHistory from langchain_openai import ChatOpenAI store = {} # memory is maintained outside the chain def get_session_history(session_id: str) -> InMemoryChatMessageHistory: if session_id not in store: store[session_id] = InMemoryChatMessageHistory() return store[session_id] model = ChatOpenAI(model="gpt-3.5-turbo-0125") chain = RunnableWithMessageHistory(model, get_session_history) chain.invoke( "Hi I'm Bob.", config={"configurable": {"session_id": "1"}}, ) # session_id determines thread ``` Memory objects can also be incorporated into the `get_session_history` callable: ```python from langchain_classic.memory import ConversationBufferWindowMemory from langchain_core.chat_history import InMemoryChatMessageHistory from langchain_core.runnables.history import RunnableWithMessageHistory from langchain_openai import ChatOpenAI store = {} # memory is maintained outside the chain def get_session_history(session_id: str) -> InMemoryChatMessageHistory: if session_id not in store: store[session_id] = InMemoryChatMessageHistory() return store[session_id] memory = ConversationBufferWindowMemory( chat_memory=store[session_id], k=3, return_messages=True, ) assert len(memory.memory_variables) == 1 key = memory.memory_variables[0] messages = memory.load_memory_variables({})[key] store[session_id] = InMemoryChatMessageHistory(messages=messages) return store[session_id] model = ChatOpenAI(model="gpt-3.5-turbo-0125") chain = RunnableWithMessageHistory(model, get_session_history) chain.invoke( "Hi I'm Bob.", config={"configurable": {"session_id": "1"}}, ) # session_id determines thread ``` Example: ```python from langchain_classic.chains import ConversationChain from langchain_openai import OpenAI conversation = ConversationChain(llm=OpenAI()) ``` """ memory: BaseMemory = Field(default_factory=ConversationBufferMemory) """Default memory store.""" prompt: BasePromptTemplate = PROMPT """Default conversation prompt to use.""" input_key: str = "input" output_key: str = "response" model_config = ConfigDict( arbitrary_types_allowed=True, extra="forbid", ) @classmethod @override def is_lc_serializable(cls) -> bool: return False @property def input_keys(self) -> list[str]: """Use this since so some prompt vars come from history.""" return [self.input_key] @model_validator(mode="after") def validate_prompt_input_variables(self) -> Self: """Validate that prompt input variables are consistent.""" memory_keys = self.memory.memory_variables input_key = self.input_key if input_key in memory_keys: msg = ( f"The input key {input_key} was also found in the memory keys " f"({memory_keys}) - please provide keys that don't overlap." ) raise ValueError(msg) prompt_variables = self.prompt.input_variables expected_keys = [*memory_keys, input_key] if set(expected_keys) != set(prompt_variables): msg = ( "Got unexpected prompt input variables. The prompt expects " f"{prompt_variables}, but got {memory_keys} as inputs from " f"memory, and {input_key} as the normal input key." ) raise ValueError(msg) return self