"""Chain that just formats a prompt and calls an LLM.""" from __future__ import annotations import warnings from collections.abc import Sequence from typing import Any, cast from langchain_core._api import deprecated from langchain_core.callbacks import ( AsyncCallbackManager, AsyncCallbackManagerForChainRun, CallbackManager, CallbackManagerForChainRun, Callbacks, ) from langchain_core.language_models import ( BaseLanguageModel, LanguageModelInput, ) from langchain_core.messages import BaseMessage from langchain_core.output_parsers import BaseLLMOutputParser, StrOutputParser from langchain_core.outputs import ChatGeneration, Generation, LLMResult from langchain_core.prompt_values import PromptValue from langchain_core.prompts import BasePromptTemplate, PromptTemplate from langchain_core.runnables import ( Runnable, RunnableBinding, RunnableBranch, RunnableWithFallbacks, ) from langchain_core.runnables.configurable import DynamicRunnable from langchain_core.utils.input import get_colored_text from pydantic import ConfigDict, Field from typing_extensions import override from langchain_classic.chains.base import Chain @deprecated( since="0.1.17", alternative="RunnableSequence, e.g., `prompt | llm`", removal="1.0", ) class LLMChain(Chain): """Chain to run queries against LLMs. This class is deprecated. See below for an example implementation using LangChain runnables: ```python from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import PromptTemplate from langchain_openai import OpenAI prompt_template = "Tell me a {adjective} joke" prompt = PromptTemplate(input_variables=["adjective"], template=prompt_template) model = OpenAI() chain = prompt | model | StrOutputParser() chain.invoke("your adjective here") ``` Example: ```python from langchain_classic.chains import LLMChain from langchain_openai import OpenAI from langchain_core.prompts import PromptTemplate prompt_template = "Tell me a {adjective} joke" prompt = PromptTemplate(input_variables=["adjective"], template=prompt_template) model = LLMChain(llm=OpenAI(), prompt=prompt) ``` """ @classmethod @override def is_lc_serializable(cls) -> bool: return True prompt: BasePromptTemplate """Prompt object to use.""" llm: Runnable[LanguageModelInput, str] | Runnable[LanguageModelInput, BaseMessage] """Language model to call.""" output_key: str = "text" output_parser: BaseLLMOutputParser = Field(default_factory=StrOutputParser) """Output parser to use. Defaults to one that takes the most likely string but does not change it otherwise.""" return_final_only: bool = True """Whether to return only the final parsed result. If `False`, will return a bunch of extra information about the generation.""" llm_kwargs: dict = Field(default_factory=dict) model_config = ConfigDict( arbitrary_types_allowed=True, extra="forbid", ) @property def input_keys(self) -> list[str]: """Will be whatever keys the prompt expects.""" return self.prompt.input_variables @property def output_keys(self) -> list[str]: """Will always return text key.""" if self.return_final_only: return [self.output_key] return [self.output_key, "full_generation"] def _call( self, inputs: dict[str, Any], run_manager: CallbackManagerForChainRun | None = None, ) -> dict[str, str]: response = self.generate([inputs], run_manager=run_manager) return self.create_outputs(response)[0] def generate( self, input_list: list[dict[str, Any]], run_manager: CallbackManagerForChainRun | None = None, ) -> LLMResult: """Generate LLM result from inputs.""" prompts, stop = self.prep_prompts(input_list, run_manager=run_manager) callbacks = run_manager.get_child() if run_manager else None if isinstance(self.llm, BaseLanguageModel): return self.llm.generate_prompt( prompts, stop, callbacks=callbacks, **self.llm_kwargs, ) results = self.llm.bind(stop=stop, **self.llm_kwargs).batch( cast("list", prompts), {"callbacks": callbacks}, ) generations: list[list[Generation]] = [] for res in results: if isinstance(res, BaseMessage): generations.append([ChatGeneration(message=res)]) else: generations.append([Generation(text=res)]) return LLMResult(generations=generations) async def agenerate( self, input_list: list[dict[str, Any]], run_manager: AsyncCallbackManagerForChainRun | None = None, ) -> LLMResult: """Generate LLM result from inputs.""" prompts, stop = await self.aprep_prompts(input_list, run_manager=run_manager) callbacks = run_manager.get_child() if run_manager else None if isinstance(self.llm, BaseLanguageModel): return await self.llm.agenerate_prompt( prompts, stop, callbacks=callbacks, **self.llm_kwargs, ) results = await self.llm.bind(stop=stop, **self.llm_kwargs).abatch( cast("list", prompts), {"callbacks": callbacks}, ) generations: list[list[Generation]] = [] for res in results: if isinstance(res, BaseMessage): generations.append([ChatGeneration(message=res)]) else: generations.append([Generation(text=res)]) return LLMResult(generations=generations) def prep_prompts( self, input_list: list[dict[str, Any]], run_manager: CallbackManagerForChainRun | None = None, ) -> tuple[list[PromptValue], list[str] | None]: """Prepare prompts from inputs.""" stop = None if len(input_list) == 0: return [], stop if "stop" in input_list[0]: stop = input_list[0]["stop"] prompts = [] for inputs in input_list: selected_inputs = {k: inputs[k] for k in self.prompt.input_variables} prompt = self.prompt.format_prompt(**selected_inputs) _colored_text = get_colored_text(prompt.to_string(), "green") _text = "Prompt after formatting:\n" + _colored_text if run_manager: run_manager.on_text(_text, end="\n", verbose=self.verbose) if "stop" in inputs and inputs["stop"] != stop: msg = "If `stop` is present in any inputs, should be present in all." raise ValueError(msg) prompts.append(prompt) return prompts, stop async def aprep_prompts( self, input_list: list[dict[str, Any]], run_manager: AsyncCallbackManagerForChainRun | None = None, ) -> tuple[list[PromptValue], list[str] | None]: """Prepare prompts from inputs.""" stop = None if len(input_list) == 0: return [], stop if "stop" in input_list[0]: stop = input_list[0]["stop"] prompts = [] for inputs in input_list: selected_inputs = {k: inputs[k] for k in self.prompt.input_variables} prompt = self.prompt.format_prompt(**selected_inputs) _colored_text = get_colored_text(prompt.to_string(), "green") _text = "Prompt after formatting:\n" + _colored_text if run_manager: await run_manager.on_text(_text, end="\n", verbose=self.verbose) if "stop" in inputs and inputs["stop"] != stop: msg = "If `stop` is present in any inputs, should be present in all." raise ValueError(msg) prompts.append(prompt) return prompts, stop def apply( self, input_list: list[dict[str, Any]], callbacks: Callbacks = None, ) -> list[dict[str, str]]: """Utilize the LLM generate method for speed gains.""" callback_manager = CallbackManager.configure( callbacks, self.callbacks, self.verbose, ) run_manager = callback_manager.on_chain_start( None, {"input_list": input_list}, name=self.get_name(), ) try: response = self.generate(input_list, run_manager=run_manager) except BaseException as e: run_manager.on_chain_error(e) raise outputs = self.create_outputs(response) run_manager.on_chain_end({"outputs": outputs}) return outputs async def aapply( self, input_list: list[dict[str, Any]], callbacks: Callbacks = None, ) -> list[dict[str, str]]: """Utilize the LLM generate method for speed gains.""" callback_manager = AsyncCallbackManager.configure( callbacks, self.callbacks, self.verbose, ) run_manager = await callback_manager.on_chain_start( None, {"input_list": input_list}, name=self.get_name(), ) try: response = await self.agenerate(input_list, run_manager=run_manager) except BaseException as e: await run_manager.on_chain_error(e) raise outputs = self.create_outputs(response) await run_manager.on_chain_end({"outputs": outputs}) return outputs @property def _run_output_key(self) -> str: return self.output_key def create_outputs(self, llm_result: LLMResult) -> list[dict[str, Any]]: """Create outputs from response.""" result = [ # Get the text of the top generated string. { self.output_key: self.output_parser.parse_result(generation), "full_generation": generation, } for generation in llm_result.generations ] if self.return_final_only: result = [{self.output_key: r[self.output_key]} for r in result] return result async def _acall( self, inputs: dict[str, Any], run_manager: AsyncCallbackManagerForChainRun | None = None, ) -> dict[str, str]: response = await self.agenerate([inputs], run_manager=run_manager) return self.create_outputs(response)[0] def predict(self, callbacks: Callbacks = None, **kwargs: Any) -> str: """Format prompt with kwargs and pass to LLM. Args: callbacks: Callbacks to pass to LLMChain **kwargs: Keys to pass to prompt template. Returns: Completion from LLM. Example: ```python completion = llm.predict(adjective="funny") ``` """ return self(kwargs, callbacks=callbacks)[self.output_key] async def apredict(self, callbacks: Callbacks = None, **kwargs: Any) -> str: """Format prompt with kwargs and pass to LLM. Args: callbacks: Callbacks to pass to LLMChain **kwargs: Keys to pass to prompt template. Returns: Completion from LLM. Example: ```python completion = llm.predict(adjective="funny") ``` """ return (await self.acall(kwargs, callbacks=callbacks))[self.output_key] def predict_and_parse( self, callbacks: Callbacks = None, **kwargs: Any, ) -> str | list[str] | dict[str, Any]: """Call predict and then parse the results.""" warnings.warn( "The predict_and_parse method is deprecated, " "instead pass an output parser directly to LLMChain.", stacklevel=2, ) result = self.predict(callbacks=callbacks, **kwargs) if self.prompt.output_parser is not None: return self.prompt.output_parser.parse(result) return result async def apredict_and_parse( self, callbacks: Callbacks = None, **kwargs: Any, ) -> str | list[str] | dict[str, str]: """Call apredict and then parse the results.""" warnings.warn( "The apredict_and_parse method is deprecated, " "instead pass an output parser directly to LLMChain.", stacklevel=2, ) result = await self.apredict(callbacks=callbacks, **kwargs) if self.prompt.output_parser is not None: return self.prompt.output_parser.parse(result) return result def apply_and_parse( self, input_list: list[dict[str, Any]], callbacks: Callbacks = None, ) -> Sequence[str | list[str] | dict[str, str]]: """Call apply and then parse the results.""" warnings.warn( "The apply_and_parse method is deprecated, " "instead pass an output parser directly to LLMChain.", stacklevel=2, ) result = self.apply(input_list, callbacks=callbacks) return self._parse_generation(result) def _parse_generation( self, generation: list[dict[str, str]], ) -> Sequence[str | list[str] | dict[str, str]]: if self.prompt.output_parser is not None: return [ self.prompt.output_parser.parse(res[self.output_key]) for res in generation ] return generation async def aapply_and_parse( self, input_list: list[dict[str, Any]], callbacks: Callbacks = None, ) -> Sequence[str | list[str] | dict[str, str]]: """Call apply and then parse the results.""" warnings.warn( "The aapply_and_parse method is deprecated, " "instead pass an output parser directly to LLMChain.", stacklevel=2, ) result = await self.aapply(input_list, callbacks=callbacks) return self._parse_generation(result) @property def _chain_type(self) -> str: return "llm_chain" @classmethod def from_string(cls, llm: BaseLanguageModel, template: str) -> LLMChain: """Create LLMChain from LLM and template.""" prompt_template = PromptTemplate.from_template(template) return cls(llm=llm, prompt=prompt_template) def _get_num_tokens(self, text: str) -> int: return _get_language_model(self.llm).get_num_tokens(text) def _get_language_model(llm_like: Runnable) -> BaseLanguageModel: if isinstance(llm_like, BaseLanguageModel): return llm_like if isinstance(llm_like, RunnableBinding): return _get_language_model(llm_like.bound) if isinstance(llm_like, RunnableWithFallbacks): return _get_language_model(llm_like.runnable) if isinstance(llm_like, (RunnableBranch, DynamicRunnable)): return _get_language_model(llm_like.default) msg = ( f"Unable to extract BaseLanguageModel from llm_like object of type " f"{type(llm_like)}" ) raise ValueError(msg)