group-wbl/.venv/lib/python3.13/site-packages/onnxruntime/tools/qnn/preprocess.py
2026-01-09 09:12:25 +08:00

166 lines
7.1 KiB
Python

# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------
"""Provide entry point to preprocess ONNX model especially for QNN."""
import argparse
import pathlib
import onnx
from onnxruntime.quantization.execution_providers import qnn
def _parse_arguments():
"""Parse cmdline arguments."""
parser = argparse.ArgumentParser(description="Arguments for QNN model preprocess.")
parser.add_argument("--input_model_path", "-i", required=True, help="Path to the input ONNX model.")
parser.add_argument("--output_model_path", "-o", required=True, help="Path to the output ONNX model.")
# Save preprocessed model with external data.
parser.add_argument(
"--save_as_external_data",
action="store_true",
help="Whether the output model would be saved with external data.",
)
parser.add_argument(
"--all_tensors_to_one_file",
action="store_true",
help="Whether to save all external data in one file or save each tensor to a file named with the tensor name.",
)
parser.add_argument(
"--external_data_location",
help="Filename of the external file where all tensors are saved. The path is relative to the model path.",
)
parser.add_argument(
"--external_data_size_threshold",
default=1024,
type=int,
help="Tensors with data size larger than this threshold are converted to external data.",
)
parser.add_argument(
"--external_data_convert_attribute",
action="store_true",
help="Whether to save all tensors, including attribute tensors, to external data.",
)
# Preprocess options.
parser.add_argument(
"--fuse_layernorm",
action="store_true",
help="Whether to fuse matched sequences into LayerNormalization nodes if possible.",
)
# I/O layouts.
parser.add_argument(
"--inputs_to_make_channel_last",
nargs="+",
default=None,
help="List of graph input names to be transposed into channel-last.",
)
parser.add_argument(
"--outputs_to_make_channel_last",
nargs="+",
default=None,
help="List of graph output names to be transposed into channel-last.",
)
# Fix dynamic input shapes.
parser.add_argument(
"--dynamic_input_shapes",
nargs=2,
action="append",
type=str,
default=None,
help="Model input name and desired static shape in comma seprated format, for example: 'input' 1,3,256,256",
)
# Exclude initializer from input
parser.add_argument(
"--exclude_initializer_from_input",
action="store_true",
help="Whether to exclude initializer from input if model.ir_version >= 4",
)
return parser.parse_args()
def qnn_preprocess_model(
model_input: str | pathlib.Path | onnx.ModelProto,
model_output: str | pathlib.Path,
fuse_layernorm: bool = False,
save_as_external_data: bool = False,
all_tensors_to_one_file: bool = False,
external_data_location: str | None = None,
external_data_size_threshold: int = 1024,
external_data_convert_attribute: bool = False,
inputs_to_make_channel_last: list[str] | None = None,
outputs_to_make_channel_last: list[str] | None = None,
dynamic_input_shapes: list[tuple[str, str]] | None = None,
exclude_initializer_from_input: bool = False,
) -> bool:
"""Preprocess ONNX model for QNN.
Args:
model_input: A path or ONNX ModelProto specifiying the model to be preprocessed.
model_output: A path specifying where the preprocessed model to be saved.
fuse_layernorm: A bool specifying whether to fuse the matched sequence into a single LayerNormalization node.
Defaults to False.
save_as_external_data: A bool specifying whether to save model with external data. Defaults to False.
all_tensors_to_one_file: A bool specifying whether to save all external data in one file or save each tensor to
a file named with the tensor name. This argument is effective only when `save_as_external_data` is True.
Defaults to False.
external_data_location: A str specifying where to save the external data. The path is relative to the model
path. This argument is effective only when `save_as_external_data` is True. Defaults to the model name.
external_data_size_threshold: An int specifying the threshold of data size for tensors be saved as external
data. This argument is effective only when `save_as_external_data` is True. Defaults to 1024.
external_data_convert_attribute: A bool specifying whether to save all tensors including attributes as external
data. This argument is effective only when `save_as_external_data` is True. Defaults to False.
inputs_to_make_channel_last: A list of strs specifying graph input names to be transposed into channel-last.
Defaults to None.
outputs_to_make_channel_last: A list of strs specifying graph output names to be transposed into channel-last.
Defaults to None.
dynamic_input_shapes: A list of tuples specifying model input name to and its static shape in comma seprated
format, for example: [('input', '1,3,256,256')]. Defaults to None.
exclude_initializer_from_input: A bool specifying whether to exclude initializer from input. Defaults to False.
Returns:
A bool indicating whether the model is modified.
"""
return qnn.qnn_preprocess_model(
model_input,
model_output,
fuse_layernorm=fuse_layernorm,
save_as_external_data=save_as_external_data,
all_tensors_to_one_file=all_tensors_to_one_file,
external_data_location=external_data_location,
external_data_size_threshold=external_data_size_threshold,
external_data_convert_attribute=external_data_convert_attribute,
inputs_to_make_channel_last=inputs_to_make_channel_last,
outputs_to_make_channel_last=outputs_to_make_channel_last,
dynamic_input_shapes=dynamic_input_shapes,
exclude_initializer_from_input=exclude_initializer_from_input,
)
if __name__ == "__main__":
args = _parse_arguments()
qnn_preprocess_model(
args.input_model_path,
args.output_model_path,
fuse_layernorm=args.fuse_layernorm,
save_as_external_data=args.save_as_external_data,
all_tensors_to_one_file=args.all_tensors_to_one_file,
external_data_location=args.external_data_location,
external_data_size_threshold=args.external_data_size_threshold,
external_data_convert_attribute=args.external_data_convert_attribute,
inputs_to_make_channel_last=args.inputs_to_make_channel_last,
outputs_to_make_channel_last=args.outputs_to_make_channel_last,
dynamic_input_shapes=args.dynamic_input_shapes,
exclude_initializer_from_input=args.exclude_initializer_from_input,
)