diff --git a/.gitignore b/.gitignore
index e69de29..3ca7834 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1,10 @@
+# Python 字节码缓存
+__pycache__/
+*.py[cod]
+*$py.class
+
+# 项目特定的存储/缓存文件夹
+.storage/
+
+# 环境变量文件(通常包含敏感信息)
+.env
\ No newline at end of file
diff --git a/.storage/config.json b/.storage/config.json
index bb995f7..c77fe55 100644
--- a/.storage/config.json
+++ b/.storage/config.json
@@ -1,6 +1,6 @@
{
- "provider": "DeepSeek",
- "api_key": "sk-ca812c913baa474182f6d4e83e078302",
- "base_url": "https://api.deepseek.com",
+ "provider": "AIHubMix",
+ "api_key": "sk-yd8Tik0nFW5emKYcBdFc433b7c8b4dC182848f76819bBe73",
+ "base_url": "https://aihubmix.com/v1",
"language": "Chinese"
}
\ No newline at end of file
diff --git a/README.md b/README.md
index 6ab56ac..5ff5ea6 100644
--- a/README.md
+++ b/README.md
@@ -1,76 +1,91 @@
-# Multi-Agent Council & Debate Workshop (V4)
+# 🍎 智能决策工作坊 (Multi-Agent Council V4)
-一个极简而强大的多智能体(Multi-Agent)决策辅助系统。
-**V4 版本**将传统的 "线性研究" 进化为 **"多模型智囊团 (Council V4)"**,支持多轮对话讨论、动态专家组建、以及多 API 平台接入。
+AI驱动的多智能体决策分析系统 - 基于多模型智囊团
-## ✨ 核心功能 (V4 Update)
+## ✨ 核心功能
-### 1. 🧪 Multi-Model Council V4 (多模型智囊团)
-摒弃了单一的"规划-执行"模式,现在的系统是一个真正的**圆桌会议**:
-* **多轮对话讨论**: 专家不再是各自为战,而是像真实会议一样进行多轮(Round-Robin)对话,互相批判、补充观点。
-* **动态专家组建**: 你可以自定义 **2-5 位** 不同的专家(如 CEO, CTO, 法务)。
-* **自定义模型分配**: 为每个专家指定最擅长的模型(例如:让 DeepSeek-Coder 担任技术专家,让 GPT-4o 担任产品专家)。
-* **最终决策合成**: 讨论结束后,最后一位专家(Synthesizer)会综合全场观点,生成最终决策方案,并绘制 **Mermaid 路线图**。
+### 🧪 Multi-Model Council V4 (智囊团模式)
+- **多轮对话讨论**: 专家像真实会议一样进行多轮对话,互相批判、补充观点
+- **动态专家组建**: 自定义 2-5 位专家,为每位指定最擅长的模型
+- **🪄 智能专家生成**: AI 根据主题自动推荐最合适的专家角色
+- **最终决策合成**: 最后一位专家综合全场观点,生成方案并绘制 Mermaid 路线图
-### 2. 🎭 Debate Workshop (辩论工作坊)
-经典的辩论模式,让 AI 扮演不同立场的角色(如正方、反方、评审),通过激烈的辩论帮助你厘清复杂决策的利弊。
+### 🎯 内置决策场景
+系统预置 4 大典型决策场景,每个场景都配置了专业的典型问题:
-### 3. 🌐 Multi-Provider Support (多平台支持)
-不再局限于单一平台,系统原生支持多种 API 源,随心切换:
-* **DeepSeek Official**: 直接连接 `api.deepseek.com`
-* **SiliconFlow (硅基流动)**: 连接 `api.siliconflow.cn`
-* **AIHubMix**: 聚合平台
-* **OpenAI / Custom**: 支持标准 OpenAI 接口或本地 vLLM/Ollama
+| 场景 | 描述 |
+|------|------|
+| 🚀 新产品发布评审 | 评估产品可行性、市场潜力和实施计划 |
+| 💰 投资审批决策 | 分析投资项目的 ROI、风险和战略价值 |
+| 🤝 合作伙伴评估 | 评估合作伙伴的匹配度和合作价值 |
+| 📦 供应商评估 | 对比分析供应商的综合能力 |
+
+### 🎭 Debate Workshop (辩论工作坊)
+让 AI 扮演不同立场角色,通过辩论帮助厘清复杂决策的利弊
+
+### 💬 用户反馈
+内置用户反馈系统,收集功能建议和使用体验
+
+### 🌐 多平台支持
+- **DeepSeek**: V3, R1, Coder
+- **OpenAI**: GPT-4o, GPT-4o-mini
+- **Anthropic**: Claude 3.5 Sonnet
+- **Google**: Gemini 1.5/2.0
+- **SiliconFlow / AIHubMix / Deepseek**
---
## 🛠️ 安装
```bash
-# 1. 克隆项目
+# 克隆项目
git clone https://github.com/HomoDeusss/multi-agent.git
cd multi-agent
-# 2. 安装依赖
-pip install -r requirements.txt
+# 初始化 uv 项目(如首次使用)
+uv init
+
+# 安装依赖
+uv add streamlit openai anthropic python-dotenv
+
+# 或者同步现有依赖
+uv sync
```
## 🚀 快速开始
-### 1. 启动应用
```bash
-streamlit run app.py
+uv run streamlit run app.py
```
-### 2. 配置 API (V4 新特性)
-无需手动修改 `.env` 文件(可选),直接在 Web 界面侧边栏配置:
-1. 在侧边栏选择 **"API Provider"** (例如 `DeepSeek` 或 `SiliconFlow`)。
-2. 输入对应的 **API Key**。
-3. 系统会自动配置好 Base URL。
+### 使用步骤
-### 3. 使用 Council V4 模式
-1. 选择 **"Deep Research" (现已升级为 Council V4)**。
-2. **设定专家**: 选择专家人数(例如 3 人),并为每位专家命名并指定模型。
- * *Tip: 建议最后一位专家选一个逻辑能力强的模型(如 Claude 3.5 Sonnet)作为决策者。*
-3. **设定轮数**: 选择讨论轮数(建议 2-3 轮)。
-4. 输入议题,点击开始。观察专家们如何互相对话!
-
-### 4. 使用 Debate 模式
-1. 切换到 **"Debate Workshop"**。
-2. 输入议题(如“是否应该全职做独立开发?”)。
-3. 选择参与辩论的角色。
-4. 点击开始,观看唇枪舌战。
+1. **配置 API**: 在侧边栏选择 Provider 并输入 API Key
+2. **选择场景**: 点击预置的决策场景或自定义主题
+3. **生成专家**: 点击 "🪄 根据主题自动生成专家" 或手动配置
+4. **开始决策**: 观察专家们如何互相对话,生成综合方案
---
-## 🤖 支持的模型 (V4 Expanded)
+## 📁 项目结构
-系统内置了最新的模型配置,支持在界面直接选择:
-* **DeepSeek**: V3 (`deepseek-chat`), R1 (`deepseek-reasoner`), Coder V2
-* **OpenAI**: GPT-4o, GPT-4o-mini
-* **Anthropic**: Claude 3.5 Sonnet, Claude 3 Opus
-* **Google**: Gemini 1.5 Pro/Flash
-* **Meta/Alibaba**: Llama 3.3, Qwen 2.5
+```
+multi_agent_workshop/
+├── app.py # Streamlit 主应用
+├── config.py # 配置文件
+├── agents/ # Agent 定义
+│ ├── agent_profiles.py # 预设角色配置
+│ ├── base_agent.py # 基础 Agent 类
+│ └── research_agent.py # 研究型 Agent
+├── orchestrator/ # 编排器
+│ ├── debate_manager.py # 辩论管理
+│ └── research_manager.py # 智囊团管理
+├── utils/
+│ ├── llm_client.py # LLM 客户端封装
+│ ├── storage.py # 存储管理
+│ └── auto_agent_generator.py # 智能专家生成
+└── report/ # 报告生成
+```
## 📝 License
[MIT License](LICENSE)
\ No newline at end of file
diff --git a/__pycache__/app.cpython-313.pyc b/__pycache__/app.cpython-313.pyc
index 45a71ff..e5965ce 100644
Binary files a/__pycache__/app.cpython-313.pyc and b/__pycache__/app.cpython-313.pyc differ
diff --git a/__pycache__/config.cpython-313.pyc b/__pycache__/config.cpython-313.pyc
index 1735124..eb6d5d9 100644
Binary files a/__pycache__/config.cpython-313.pyc and b/__pycache__/config.cpython-313.pyc differ
diff --git a/app.py b/app.py
index e424796..4bc1a62 100644
--- a/app.py
+++ b/app.py
@@ -17,6 +17,7 @@ from report import ReportGenerator
from report import ReportGenerator
from utils import LLMClient
from utils.storage import StorageManager
+from utils.auto_agent_generator import generate_experts_for_topic
import config
# ==================== 页面配置 ====================
@@ -30,37 +31,146 @@ st.set_page_config(
# ==================== 样式 ====================
st.markdown("""
""", unsafe_allow_html=True)
@@ -122,6 +232,8 @@ if "research_output" not in st.session_state:
st.session_state.research_output = "" # Final report
if "research_steps_output" not in st.session_state:
st.session_state.research_steps_output = [] # List of step results
+if "generated_experts" not in st.session_state:
+ st.session_state.generated_experts = None # Auto-generated expert configs
# ==================== 侧边栏:配置 ====================
@@ -210,7 +322,7 @@ with st.sidebar:
save_current_config()
if not api_key:
- st.warning("请配置 API Key 以继续")
+ st.warning("⚠️ 请配置 API Key 以启用 AI 功能 (仍可查看历史档案)")
# Output Language Selection
lang_options = config.SUPPORTED_LANGUAGES
@@ -251,8 +363,8 @@ with st.sidebar:
# 模式选择
mode = st.radio(
"📊 选择模式",
- ["Council V4 (Deep Research)", "Debate Workshop", "📜 History Archives"],
- index=0 if st.session_state.mode == "Deep Research" else (1 if st.session_state.mode == "Debate Workshop" else 2)
+ ["Council V4 (Deep Research)", "Debate Workshop", "📜 History Archives", "💬 用户反馈"],
+ index=0 if st.session_state.mode == "Deep Research" else (1 if st.session_state.mode == "Debate Workshop" else (2 if st.session_state.mode == "History Archives" else 3))
)
# Map selection back to internal mode string
@@ -260,8 +372,10 @@ with st.sidebar:
st.session_state.mode = "Deep Research"
elif mode == "Debate Workshop":
st.session_state.mode = "Debate Workshop"
- else:
+ elif mode == "📜 History Archives":
st.session_state.mode = "History Archives"
+ else:
+ st.session_state.mode = "Feedback"
st.divider()
@@ -341,18 +455,167 @@ if st.session_state.get("bg_image_data_url"):
# ==================== 主界面逻辑 ====================
if st.session_state.mode == "Deep Research":
- st.title("🧪 Multi-Model Council V4")
- st.markdown("*多模型智囊团:自定义 N 个专家进行多轮对话讨论,最后由最后一位专家决策*")
+ # ==================== 主标题区域 ====================
+ st.markdown("""
+
+
🍎 智能决策工作坊
+
AI驱动的多智能体决策分析系统 - 基于多模型智囊团
+
+ """, unsafe_allow_html=True)
+
+ # 状态指示器和语言选择
+ col_status, col_lang = st.columns([2, 1])
+ with col_status:
+ if api_key:
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+ else:
+ st.warning("⚠️ 请在侧边栏配置 API Key")
+
+ with col_lang:
+ st.markdown(f"**语言/Language:** {output_language}")
+
+ st.divider()
+
+ # ==================== 开始决策按钮 ====================
+ st.markdown("""
+
+
🚀 开始决策
+
选择场景或自定义主题,开始多专家协作分析
+
+ """, unsafe_allow_html=True)
+
+ st.divider()
+
+ # ==================== 支持的决策场景 ====================
+ st.markdown("""
+
+
📋 支持的决策场景
+
系统支持以下决策场景,每个场景都配置了专业的AI专家团队
+
+ """, unsafe_allow_html=True)
+
+ # Decision scenario templates with typical questions
+ DECISION_SCENARIOS = {
+ "🚀 新产品发布评审": {
+ "topic": "新产品发布评审:评估产品功能完备性、市场准备度、发布时机和潜在风险",
+ "description": "评估新产品概念的可行性、市场潜力和实施计划",
+ "example": "我们计划在下个季度发布AI助手功能,需要评估技术准备度、市场时机和竞争态势",
+ "questions": [
+ "这个产品的核心价值主张是什么?",
+ "目标用户群体是谁?需求是否真实存在?",
+ "技术实现难度如何?团队是否具备能力?",
+ "竞争对手有类似产品吗?我们的差异化在哪?"
+ ]
+ },
+ "💰 投资审批决策": {
+ "topic": "投资审批决策:评估投资项目的财务回报、战略价值、风险因素和执行可行性",
+ "description": "分析投资项目的ROI、风险和战略价值",
+ "example": "公司考虑投资1000万用于数据中台建设,需要评估ROI、技术风险和业务价值",
+ "questions": [
+ "预期投资回报率(ROI)是多少?",
+ "投资回收期需要多长时间?",
+ "主要风险因素有哪些?如何缓解?",
+ "是否有更优的替代方案?"
+ ]
+ },
+ "🤝 合作伙伴评估": {
+ "topic": "合作伙伴评估:分析潜在合作方的能力、信誉、战略协同和合作风险",
+ "description": "评估潜在合作伙伴的匹配度和合作价值",
+ "example": "评估与XX公司建立战略合作的可行性,包括技术互补性、市场协同和风险",
+ "questions": [
+ "合作方的核心能力是什么?",
+ "双方资源如何互补?",
+ "合作的战略协同效应有多大?",
+ "合作失败的风险和退出机制是什么?"
+ ]
+ },
+ "📦 供应商评估": {
+ "topic": "供应商评估:评估供应商的质量、成本、交付能力、稳定性和合作风险",
+ "description": "对比分析供应商的综合能力",
+ "example": "评估更换核心零部件供应商的利弊,包括成本对比、质量风险和切换成本",
+ "questions": [
+ "供应商的质量控制体系如何?",
+ "价格竞争力与行业均值对比?",
+ "交付能力和响应速度如何?",
+ "供应商的财务稳定性如何?"
+ ]
+ }
+ }
+
+ # Display scenario cards with typical questions
+ for scenario_name, scenario_data in DECISION_SCENARIOS.items():
+ st.markdown(f"""
+
+
{scenario_name}
+
{scenario_data['description']}
+
+
典型问题:
+
+ {''.join([f'- {q}
' for q in scenario_data['questions']])}
+
+
+
+ """, unsafe_allow_html=True)
+
+ if st.button(f"使用此场景", key=f"use_{scenario_name}", use_container_width=True):
+ st.session_state.selected_scenario = scenario_data
+ st.session_state.prefill_topic = scenario_data['topic']
+ st.rerun()
+
+ st.divider()
+
+ # Get prefilled topic if available
+ prefill_topic = st.session_state.get("prefill_topic", "")
+ if st.session_state.get("selected_scenario"):
+ prefill_topic = prefill_topic or st.session_state.selected_scenario.get("topic", "")
col1, col2 = st.columns([3, 1])
with col1:
- research_topic = st.text_area("研究/决策主题", placeholder="请输入你想深入研究或决策的主题...", height=100)
+ research_topic = st.text_area("研究/决策主题", value=prefill_topic, placeholder="请输入你想深入研究或决策的主题...", height=100)
with col2:
max_rounds = st.number_input("讨论轮数", min_value=1, max_value=5, value=2, help="专家们进行对话的轮数")
# Expert Configuration
st.subheader("👥 专家配置")
- num_experts = st.number_input("专家数量", min_value=2, max_value=5, value=3)
+
+ # Auto-generate experts row
+ col_num, col_auto = st.columns([2, 3])
+ with col_num:
+ num_experts = st.number_input("专家数量", min_value=2, max_value=5, value=3)
+ with col_auto:
+ st.write("") # Spacing
+ auto_gen_btn = st.button(
+ "🪄 根据主题自动生成专家",
+ disabled=(not research_topic or not api_key),
+ help="AI 将根据您的主题自动推荐合适的专家角色"
+ )
+
+ # Handle auto-generation
+ if auto_gen_btn and research_topic and api_key:
+ with st.spinner("🤖 AI 正在分析主题并生成专家配置..."):
+ try:
+ temp_client = LLMClient(
+ provider=provider_id,
+ api_key=api_key,
+ base_url=base_url,
+ model="gpt-4o-mini" # Use fast model for generation
+ )
+ generated = generate_experts_for_topic(
+ topic=research_topic,
+ num_experts=num_experts,
+ llm_client=temp_client,
+ language=output_language
+ )
+ st.session_state.generated_experts = generated
+ st.success(f"✅ 已生成 {len(generated)} 位专家配置!")
+ st.rerun()
+ except Exception as e:
+ st.error(f"生成失败: {e}")
experts_config = []
cols = st.columns(num_experts)
@@ -360,11 +623,20 @@ if st.session_state.mode == "Deep Research":
for i in range(num_experts):
with cols[i]:
default_model_key = list(AVAILABLE_MODELS.keys())[i % len(AVAILABLE_MODELS)]
- st.markdown(f"**Expert {i+1}**")
- # Default names
- default_name = f"Expert {i+1}"
- if i == num_experts - 1:
- default_name = f"Expert {i+1} (Synthesizer)"
+
+ # Use generated expert name if available
+ if st.session_state.generated_experts and i < len(st.session_state.generated_experts):
+ gen_expert = st.session_state.generated_experts[i]
+ default_name = gen_expert.get("name", f"Expert {i+1}")
+ perspective = gen_expert.get("perspective", "")
+ st.markdown(f"**{default_name}**")
+ if perspective:
+ st.caption(f"_{perspective}_")
+ else:
+ default_name = f"Expert {i+1}"
+ if i == num_experts - 1:
+ default_name = f"Expert {i+1} (Synthesizer)"
+ st.markdown(f"**Expert {i+1}**")
expert_name = st.text_input(f"名称 #{i+1}", value=default_name, key=f"expert_name_{i}")
expert_model = st.selectbox(f"模型 #{i+1}", options=list(AVAILABLE_MODELS.keys()), index=list(AVAILABLE_MODELS.keys()).index(default_model_key), key=f"expert_model_{i}")
@@ -376,12 +648,58 @@ if st.session_state.mode == "Deep Research":
research_context = st.text_area("补充背景 (可选)", placeholder="任何额外的背景信息...", height=80)
- start_research_btn = st.button("🚀 开始多模型协作", type="primary", disabled=not research_topic)
+ start_research_btn = st.button("🚀 开始多模型协作", type="primary", disabled=(not research_topic or not api_key))
+ if not api_key:
+ st.info("💡 请先在侧边栏配置 API Key 才能开始任务")
+
+ # ==================== 恢复会话逻辑 (Resume Logic) ====================
+ # Try to load cached session
+ cached_session = st.session_state.storage.load_session_state("council_cache")
+
+ # If we have a cached session, and we are NOT currently running one (research_started is False)
+ if cached_session and not st.session_state.research_started:
+ st.info(f"🔍 检测到上次未完成的会话: {cached_session.get('topic', 'Unknown Topic')}")
+ col_res1, col_res2 = st.columns([1, 4])
+ with col_res1:
+ if st.button("🔄 恢复会话", type="primary"):
+ # Restore state
+ st.session_state.research_started = True
+ st.session_state.research_output = "" # Usually empty if unfinished
+ st.session_state.research_steps_output = cached_session.get("steps_output", [])
+
+ # Restore inputs if possible (tricky with widgets, but we can set defaults or just rely on cache for display)
+ # For simplicity, we restore the viewing state. Continuing generation is harder without rebuilding the exact generator state.
+ # Currently, "Resume" means "Restore View". To continue adding to it would require skipping done steps in manager.
+
+ st.rerun()
+ with col_res2:
+ if st.button("🗑️ 放弃", type="secondary"):
+ st.session_state.storage.clear_session_state("council_cache")
+ st.rerun()
+
+ # ==================== 历史渲染区域 (Always visible if started) ====================
+ if st.session_state.research_started and st.session_state.research_steps_output and not start_research_btn:
+ st.subheader("🗣️ 智囊团讨论历史")
+ for step in st.session_state.research_steps_output:
+ step_name = step.get('step', 'Unknown')
+ content = step.get('output', '')
+ role_type = "assistant"
+
+ with st.chat_message(role_type, avatar="🤖"):
+ st.markdown(f"**{step_name}**")
+ st.markdown(content)
+ st.divider()
+
+ # ==================== 执行区域 (Triggered by Button) ====================
if start_research_btn and research_topic:
st.session_state.research_started = True
st.session_state.research_output = ""
st.session_state.research_steps_output = []
+
+ # Clear any old cache when starting fresh
+ st.session_state.storage.clear_session_state("council_cache")
+
# 使用全局页面背景(若已上传)
research_bg_path = st.session_state.get("bg_image_path")
if st.session_state.get("bg_image_data_url"):
@@ -404,9 +722,7 @@ if st.session_state.mode == "Deep Research":
)
manager.create_agents(config_obj)
- st.divider()
st.subheader("🗣️ 智囊团讨论中...")
-
chat_container = st.container()
try:
@@ -418,10 +734,11 @@ if st.session_state.mode == "Deep Research":
# Create a chat message block
with chat_container:
- st.markdown(f"#### {current_step_name}")
- st.caption(f"🤖 {current_agent} ({current_model})")
- message_placeholder = st.empty()
- current_content = ""
+ with st.chat_message("assistant", avatar="🤖"):
+ st.markdown(f"**{current_step_name}**")
+ st.caption(f"({current_model})")
+ message_placeholder = st.empty()
+ current_content = ""
elif event["type"] == "content":
current_content += event["content"]
@@ -433,7 +750,18 @@ if st.session_state.mode == "Deep Research":
"step": current_step_name,
"output": event["output"]
})
- st.divider() # Separator between turns
+
+ # === AUTO-SAVE CACHE ===
+ # Save current progress to session cache
+ cache_data = {
+ "topic": research_topic,
+ "context": research_context,
+ "steps_output": st.session_state.research_steps_output,
+ "experts_config": experts_config,
+ "max_rounds": max_rounds
+ }
+ st.session_state.storage.save_session_state("council_cache", cache_data)
+ # =======================
# The last step output is the final plan
if st.session_state.research_steps_output:
@@ -456,6 +784,10 @@ if st.session_state.mode == "Deep Research":
content=final_plan,
metadata=metadata
)
+
+ # Clear session cache as we finished successfully
+ st.session_state.storage.clear_session_state("council_cache")
+
st.toast("✅ 记录已保存到历史档案")
except Exception as e:
@@ -624,6 +956,8 @@ elif st.session_state.mode == "Debate Workshop":
type="primary",
use_container_width=True
)
+ if not api_key:
+ st.caption("🔒 需配置 API Key")
with col_btn2:
reset_btn = st.button(
@@ -863,6 +1197,117 @@ elif st.session_state.mode == "History Archives":
file_name=f"{record['type']}_{record['id']}.md"
)
+# ==================== 用户反馈页面 ====================
+elif st.session_state.mode == "Feedback":
+ st.title("💬 用户反馈")
+ st.markdown("*您的反馈帮助我们不断改进产品*")
+
+ # Feedback form
+ st.subheader("📝 提交反馈")
+
+ feedback_type = st.selectbox(
+ "反馈类型",
+ ["功能建议", "Bug 报告", "使用体验", "其他"],
+ help="选择您要反馈的类型"
+ )
+
+ # Rating
+ st.markdown("**整体满意度**")
+ rating = st.slider("", 1, 5, 4, format="%d ⭐")
+ rating_labels = {1: "😞 非常不满意", 2: "😕 不满意", 3: "😐 一般", 4: "😊 满意", 5: "🤩 非常满意"}
+ st.caption(rating_labels.get(rating, ""))
+
+ # Feedback content
+ feedback_content = st.text_area(
+ "详细描述",
+ placeholder="请描述您的反馈内容...\n\n例如:\n- 您遇到了什么问题?\n- 您希望增加什么功能?\n- 您对哪些方面有改进建议?",
+ height=200
+ )
+
+ # Feature requests for Council V4
+ st.subheader("🎯 功能需求调研")
+ st.markdown("您最希望看到哪些新功能?(可多选)")
+
+ feature_options = {
+ "more_scenarios": "📋 更多决策场景模板",
+ "export_pdf": "📄 导出 PDF 报告",
+ "voice_input": "🎤 语音输入支持",
+ "realtime_collab": "👥 多人实时协作",
+ "custom_prompts": "✏️ 自定义专家 Prompt",
+ "api_access": "🔌 API 接口支持",
+ "mobile_app": "📱 移动端应用"
+ }
+
+ selected_features = []
+ cols = st.columns(3)
+ for idx, (key, label) in enumerate(feature_options.items()):
+ with cols[idx % 3]:
+ if st.checkbox(label, key=f"feature_{key}"):
+ selected_features.append(key)
+
+ # Contact info (optional)
+ st.subheader("📧 联系方式(可选)")
+ contact_email = st.text_input("邮箱", placeholder="your@email.com")
+
+ # Submit button
+ st.divider()
+ if st.button("📤 提交反馈", type="primary", use_container_width=True):
+ if feedback_content.strip():
+ # Save feedback
+ feedback_data = {
+ "type": feedback_type,
+ "rating": rating,
+ "content": feedback_content,
+ "features": selected_features,
+ "email": contact_email,
+ "timestamp": st.session_state.storage._get_timestamp() if hasattr(st.session_state.storage, '_get_timestamp') else ""
+ }
+
+ # Save to storage
+ try:
+ import json
+ import os
+ feedback_dir = os.path.join(st.session_state.storage.base_dir, "feedback")
+ os.makedirs(feedback_dir, exist_ok=True)
+
+ from datetime import datetime
+ filename = f"feedback_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
+ filepath = os.path.join(feedback_dir, filename)
+
+ with open(filepath, 'w', encoding='utf-8') as f:
+ json.dump(feedback_data, f, ensure_ascii=False, indent=2)
+
+ st.success("🎉 感谢您的反馈!我们会认真阅读并持续改进产品。")
+ st.balloons()
+ except Exception as e:
+ st.error(f"保存反馈时出错: {e}")
+ else:
+ st.warning("请填写反馈内容")
+
+ # Show previous feedback summary
+ st.divider()
+ with st.expander("📊 我的反馈历史"):
+ try:
+ import os
+ import json
+ feedback_dir = os.path.join(st.session_state.storage.base_dir, "feedback")
+ if os.path.exists(feedback_dir):
+ files = sorted(os.listdir(feedback_dir), reverse=True)[:5]
+ if files:
+ for f in files:
+ filepath = os.path.join(feedback_dir, f)
+ with open(filepath, 'r', encoding='utf-8') as file:
+ data = json.load(file)
+ st.markdown(f"**{data.get('timestamp', 'Unknown')}** | {data.get('type', '')} | {'⭐' * data.get('rating', 0)}")
+ st.caption(data.get('content', '')[:100] + "...")
+ st.divider()
+ else:
+ st.info("暂无反馈记录")
+ else:
+ st.info("暂无反馈记录")
+ except Exception:
+ st.info("暂无反馈记录")
+
# ==================== 底部信息 ====================
st.divider()
col_footer1, col_footer2, col_footer3 = st.columns(3)
diff --git a/config.py b/config.py
index 1ee3715..6e6a67f 100644
--- a/config.py
+++ b/config.py
@@ -96,6 +96,9 @@ MAX_AGENTS = 6 # 最大参与 Agent 数量
# 支持的输出语言
SUPPORTED_LANGUAGES = ["Chinese", "English", "Japanese", "Spanish", "French", "German"]
+# 生成配置
+MAX_OUTPUT_TOKENS = 300 # 限制单次回复长度,保持精简
+
# 研究模式模型角色配置
RESEARCH_MODEL_ROLES = {
"expert_a": {
diff --git a/utils/__pycache__/llm_client.cpython-313.pyc b/utils/__pycache__/llm_client.cpython-313.pyc
index 1a8cdb0..ed60228 100644
Binary files a/utils/__pycache__/llm_client.cpython-313.pyc and b/utils/__pycache__/llm_client.cpython-313.pyc differ
diff --git a/utils/__pycache__/storage.cpython-313.pyc b/utils/__pycache__/storage.cpython-313.pyc
index 00dbe78..7af2bba 100644
Binary files a/utils/__pycache__/storage.cpython-313.pyc and b/utils/__pycache__/storage.cpython-313.pyc differ
diff --git a/utils/auto_agent_generator.py b/utils/auto_agent_generator.py
new file mode 100644
index 0000000..b9beaa6
--- /dev/null
+++ b/utils/auto_agent_generator.py
@@ -0,0 +1,108 @@
+"""
+Auto Agent Generator - 根据主题自动生成专家配置
+Uses LLM to analyze the topic and suggest appropriate expert agents.
+"""
+import json
+import re
+from typing import List, Dict
+from utils.llm_client import LLMClient
+
+
+EXPERT_GENERATION_PROMPT = """You are an expert team composition advisor. Given a research/decision topic, you need to suggest the most appropriate team of experts to analyze it.
+
+Instructions:
+1. Analyze the topic carefully to understand its domain and key aspects
+2. Generate {num_experts} distinct expert roles that would provide the most valuable perspectives
+3. Each expert should have a unique focus area relevant to the topic
+4. The LAST expert should always be a "Synthesizer" role who can integrate all perspectives
+
+Output Format (MUST be valid JSON array):
+[
+ {{"name": "Expert Name", "perspective": "Brief description of their viewpoint", "focus": "Key areas they analyze"}},
+ ...
+]
+
+Examples of good expert names based on topic:
+- For "Should we launch an e-commerce platform?": "市场渠道分析师", "电商运营专家", "供应链顾问", "数字化转型综合师"
+- For "Career transition to AI field": "职业发展顾问", "AI行业专家", "技能评估分析师", "综合规划师"
+
+IMPORTANT:
+- Use {language} for all names and descriptions
+- Make names specific to the topic, not generic like "Expert 1"
+- The last expert MUST be a synthesizer/integrator type
+
+Topic: {topic}
+
+Generate exactly {num_experts} experts as a JSON array:"""
+
+
+def generate_experts_for_topic(
+ topic: str,
+ num_experts: int,
+ llm_client: LLMClient,
+ language: str = "Chinese"
+) -> List[Dict[str, str]]:
+ """
+ Use LLM to generate appropriate expert configurations based on the topic.
+
+ Args:
+ topic: The research/decision topic
+ num_experts: Number of experts to generate (2-5)
+ llm_client: LLM client instance for API calls
+ language: Output language (Chinese/English)
+
+ Returns:
+ List of expert dicts: [{"name": "...", "perspective": "...", "focus": "..."}, ...]
+ """
+ if not topic.strip():
+ return []
+
+ prompt = EXPERT_GENERATION_PROMPT.format(
+ topic=topic,
+ num_experts=num_experts,
+ language=language
+ )
+
+ try:
+ response = llm_client.chat(
+ system_prompt="You are a helpful assistant that generates JSON output only. No markdown, no explanation.",
+ user_prompt=prompt,
+ max_tokens=800
+ )
+
+ # Extract JSON from response (handle potential markdown wrapping)
+ json_match = re.search(r'\[[\s\S]*\]', response)
+ if json_match:
+ experts = json.loads(json_match.group())
+ # Validate structure
+ if isinstance(experts, list) and len(experts) >= 1:
+ validated = []
+ for exp in experts[:num_experts]:
+ if isinstance(exp, dict) and "name" in exp:
+ validated.append({
+ "name": exp.get("name", "Expert"),
+ "perspective": exp.get("perspective", ""),
+ "focus": exp.get("focus", "")
+ })
+ return validated
+ except (json.JSONDecodeError, Exception) as e:
+ print(f"[AutoAgentGenerator] Error parsing LLM response: {e}")
+
+ # Fallback: return generic experts
+ fallback = []
+ for i in range(num_experts):
+ if i == num_experts - 1:
+ fallback.append({"name": f"综合分析师", "perspective": "整合视角", "focus": "综合决策"})
+ else:
+ fallback.append({"name": f"专家 {i+1}", "perspective": "分析视角", "focus": "专业分析"})
+ return fallback
+
+
+def get_default_model_for_expert(expert_index: int, total_experts: int, available_models: list) -> str:
+ """
+ Assign a default model to an expert based on their position.
+ Spreads experts across available models for diversity.
+ """
+ if not available_models:
+ return "gpt-4o"
+ return available_models[expert_index % len(available_models)]
diff --git a/utils/llm_client.py b/utils/llm_client.py
index f3881d8..0b11447 100644
--- a/utils/llm_client.py
+++ b/utils/llm_client.py
@@ -5,6 +5,8 @@ from typing import Generator
import os
+import config
+
class LLMClient:
"""LLM API 统一客户端"""
@@ -62,7 +64,7 @@ class LLMClient:
self,
system_prompt: str,
user_prompt: str,
- max_tokens: int = 1024
+ max_tokens: int = config.MAX_OUTPUT_TOKENS
) -> Generator[str, None, None]:
"""
流式对话
diff --git a/utils/storage.py b/utils/storage.py
index f827112..84e5dc0 100644
--- a/utils/storage.py
+++ b/utils/storage.py
@@ -150,3 +150,35 @@ class StorageManager:
return json.load(f)
except Exception:
return None
+
+ # ==================== Session Cache (Resume Functionality) ====================
+ def save_session_state(self, key: str, data: Dict[str, Any]):
+ """Save temporary session state for recovery"""
+ try:
+ # We use a dedicated cache file per key
+ cache_file = self.root_dir / f"{key}_cache.json"
+ data["_timestamp"] = int(time.time())
+ with open(cache_file, 'w', encoding='utf-8') as f:
+ json.dump(data, f, indent=2, ensure_ascii=False)
+ except Exception as e:
+ print(f"Error saving session cache: {e}")
+
+ def load_session_state(self, key: str) -> Dict[str, Any]:
+ """Load temporary session state"""
+ cache_file = self.root_dir / f"{key}_cache.json"
+ if not cache_file.exists():
+ return None
+ try:
+ with open(cache_file, 'r', encoding='utf-8') as f:
+ return json.load(f)
+ except Exception:
+ return None
+
+ def clear_session_state(self, key: str):
+ """Clear temporary session state"""
+ cache_file = self.root_dir / f"{key}_cache.json"
+ if cache_file.exists():
+ try:
+ os.remove(cache_file)
+ except Exception:
+ pass